А если нет цветных светодиодов ?

Как определить на сколько вольт светодиод?

А если нет цветных светодиодов ?

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии.

Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно.

Так как узнать падение напряжения на светодиоде?

Теоретический метод

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр.

Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора.

Существуют и другие способы тестирования излучающих диодов, о которых подробно написано в данной статье.

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе.

В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.

С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но ,с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.

Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта.

В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт.

Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В.

Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

Узнать все технические характеристики светодиода можно из интернета.

Для этого нужно скачать datasheet на схожую по внешним признакам модель, обязательно такого же цвета свечения, сверить паспортные размеры с действительными и выписать номинальные значения тока и падения напряжения.

Следует учитывать, что данная методика весьма приблизительна, так как в одинаковом корпусе могут быть изготовлены светодиоды на 20 мА и на 150 мА с разбросом напряжения до 0,5 вольт.

Практический метод

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений.

Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.

Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет.

В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору.

Текущие показания на экране и будут номинальным прямым напряжением светодиода. Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно воспользоваться «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Источник: https://ledjournal.info/vopros-otvet/kak-uznat-naprjazhenie-svetodioda.html

Как подключить светодиодную ленту Примеры

А если нет цветных светодиодов ?

У человека, который не так часто использует или впервые собирается использовать светодиодную ленту может возникнуть множество вопросов.

Большую часть из них, мы рассмотрели в этой статье. В ней вы узнаете о взаимосвязи, важности выбора каждого компонента для светодиодной ленты. Так же мы рассказали об основных видах и различиях светодиодных лент.

Рекомендуем прочесть ее для лучшей осведомленности и понимания описываемых далее событий и действий.

В моментах требующих дополнительного пояснения, мы сделаем кликабелыными некоторое слова или фразы (помечены цветом), нажав на которые, у вас откроется в отдельной вкладке часть рекомендуемой статьи, рассказывающий о той или иной особенности или элементе.

 

Предупреждение!
Прежде, чем следовать представленным примерам, изучите их полностью и обдумайте все последствия и риски. Помните, что показанные и описанные далее действия выполняются вами на собственный страх и риск.

Автор и ресурс не несут никакой ответственности за любые последствия.

Сделать подходящий выбор – это только этап перед использованием, за которым следует следующий не менее важный этап, а именно монтаж изделия и подключение.Далее мы ответим на вопрос – как подключить светодиодную ленту, рассмотрев несколько способов, среди которых будет один нестандартный подход.

Первое с чего следует начать – это определить, какую ленту требуется подключить многоцветную (RGB, WRGB) или одноцветную ленту. От этого будет зависеть схема подключения и требуемые компоненты.Если вы не знаете какая у вас лента, то определить очень просто, достаточно посмотреть на количество контактных площадок на изделии.

У многоцветной ленты их будет 4 для RGB или 5 для WRGB. Все контакты на цветной ленте, кроме одного будут отвечать за определенный спектр цвета, а один оставшийся будет общим + 12V или +24V в зависимости от типа изделия.

 

В чем отличие между RGB и WRGB мы уже рассматривали в статье, про которую мы сказали в самом начале, но все же кратко напомним.

 В RGB ленте используются только многокристальные светодиоды, а в WRGB к многокристальным добавляется однокристальные светодиоды белого цвета, которые чередуются с многокристальными через определенный промежуток. Для большей ясности взглянем на фотографию.У одноцветной ленты всего 2 контакта, плюс и минус. Подобные изделия не способны изменять свой цвет.

Рассмотрим схемы и компоненты требуемые для подключения каждого из видов.Начнем с подключения одноцветной ленты, так как для ее работы используется меньше компонентов и она более распространена.Рассмотрим компоненты требующиеся для подключения.

  • светодиодная лента
  • блок питания
  • провода
  • сетевой шнур

На картинке представлена схема для 1 и 2 типа блоков питания. Далее рассмотрим подробно каждый из этапов. Тип блока питания можно определить в конце статьи.Для обеих схем большая часть выполняемых действий будет одинакова.

 

Представленные ниже примеры демонстрирует подключение одноцветной ленты. Для подключения многоцветной RGB ленты используется иной подход. Его вы сможете найти опустившись вниз по статье, нажав сюда или воспользуйтесь меню навигации в начале статьи.

Предупреждение!
Еще раз напоминаем о предупреждении в начала материала. Мы и ресурс не несем никакой ответственности за последствия. Все описанное и изложенное производится на собственный страх и риск.

Возьмем ленту и найдем припаянные провода в начале, если они отсутствуют, то находим

ближайшие контактные площадки.

 

Далее у нас есть несколько вариантов.

 

  • 1 Мы можем вставить контактные площадки в коннектор.
  • 2 Если присутствуют провода в начале ленты, то мы можем сделать скрутку.
  • 3 Если присутствуют провода в начале ленты, то мы можем припаяться к ним.

Первый вариант с коннекторами достаточно прост в реализации так как лента соединяется с коннекторами при помощи «защелок», поэтому мы не будем особо останавливаться на этом способе и перейдем к остальным.Оставшиеся два способа имеют, схожие этапы, поэтому мы рассмотрим их вместе.  Продолжаем. Мы нашли провода вначале ленты или ближайшие контактные площадки.После этого нам необходимо хотя бы немного удлинить провода, что бы можно было закрепить или положить блок питания в удобное место.Если вначале ленты присутствуют провода, то следуйте инструкции, которая будет далее.

Если нет, то пропустите последующие шаги и сразу опуститесь ниже, до раздела, где мы рассказываем, как разделить ленту на части и соединить их. Или нажмите сюда для перехода.

В том разделе вы найдете, как припаять отсутствующие провода. Желательно сразу припаивать провода требующейся вам длинны.

Первым шагом нам нужно снять изоляцию с проводов на ленте, а так же с проводов, которыми мы будем удлинять.

Снимаем по несколько сантиметров и переходим к выполнению следующего шага.

Самое главное не перепутать провода при соединении с блоком питания в конце, а пока продолжаем.

Берем оголенные провода и скручиваем «волоски» между собой.

В готовом виде должно выглядеть, как на фото выше. На данном моменте вариант – скрутка почти готов, остается только заизолировать каждый из проводов, по отдельности.

После того, как заизолировали провода, можно переходить к подключению блока питания и использованию продукта.

Для тех, кто собирается использовать вариант с пайкой, продолжаем далее выполнять шаги. Их остается не так много.

Выполнив скрутку подготавливаем паяльник и принадлежности к пайке. Как правильно паять не буду рассказывать в данной статье, иначе это может затянуться надолго.

Расскажу как-нибудь в другой раз. Предположим, что мы уже спаяли провода между собой. В готовом виде будет выглядеть примерно, как на фото.

Осталось заизолировать провода.

Далее переходим к подключению блока питания или читаем, как соединить части ленты.

Для начала определим, какой тип блока питания у нас имеется. Для этого переходим почти в самый конец статьи или нажимаем сюда для автоматической прокрутки.

Определив тип блока питания выполняем один из следующих пунктов в зависимости от имеющегося типа.
Если у вас первый тип блока питания, вы использовали коннектор для ленты с таким же разъемом, как у блока питания, то просто соедините их.

 

 

Если у вас отсутствует коннектор на ленте, то срежьте разъем с блока питания и припаяйте провода от ленты, соблюдая обозначения – плюс и минус.

2 тип

Если у вас второй тип.

 

  • Зачистите удлиненные провода на ленте с обратной стороны, скрутите их
  • Немного открутите винтики на блоке питания
  • Затем подсуньте под них провода, а лучше обвяжите винтики проводами в виде кольца
  • Затем прижмите провода винтиками
  • Таким же образом подключите сетевой шнур
  • Если видны оголенные провода, то заизолируйте их
  • Все готово пользуйтесь.

Как разделить светодиодную ленту на части

Если требуется разделить ленту на несколько частей, то разрезаем строго в указанных местах.

Места, где можно разделить изделие обозначаются в виде ножниц. Разрезаем так, что бы на обеих частях, с обеих сторон образовались контактные площадки.

Данный метод подходит для обоих типов лент, то есть для одноцветной и многоцветной.Единственным различием в данном случае будет количество использующихся проводов.Для одноцветной ленты оно будет равно 2, а для многоцветной 4 – 5.

Предположим, что вам нужно соединить несколько разрезанных частей ленты между собой. Или если на вашей ленте не было изначально припаянных проводов.Есть два варианта – использовать специальные коннекторы, либо паять.

Мы будем паять, использование коннекторов не должно вызвать особых трудностей.

Находим ближайшие к краю контактные площадки

Берем кусочек провода требуемой длины, зачищаем и скручиваем

Скрученные провода должны выглядеть примерно, как на фото выше.

Берем паяльник и принадлежности, затем лудим провода. Пример на фото выше.

Припаиваем провода к ленте. Осталось заизолировать провода и готово.Таким образом, мы припаяли провода к ленте, если они отсутствовали по какой-либо причине.Если вам требуется соединить несколько кусочков ленты с определенным промежутком, то припаяйте одну сторону проводов, как показано выше. Затем зачистите противоположные концы этих проводов припаяйте их к другому кусочку ленты. Если потребуется заизолируйте оголенные части проводов.

Если вам требуется соединить несколько кусочков без расстояния между ними, то сопоставьте контактные площадки 2-х кусочков ленты друг напротив друга, так что бы они немного накладывались друг на друга, затем спаяйте. Выглядеть должно примерно так.

Главное – не перепутайте плюс и минус местами. Обозначения подписаны по обеим сторонам ленты.Процесс подключения и некоторые требуемые компоненты отличаются от простой, одноцветной ленты.Для подключения многоцветной ленты нам потребуются следующие компоненты.

  • светодиодная лента
  • контроллер цвета (только для многоцветной ленты)
  • блок питания
  • сетевой провод (опционально, зависит от блока питания)
  • штекер или коннектор (зависит от ситуации)

Как правило, многоцветная RGB лента подключается к контроллеру с помощью коннектора, который уже обычно присутствует на большинстве изделий.

 

Если он отсутствует, то можно подключиться к контроллеру, например, с помощью коннектора, приобретаемого отдельно или при помощи пайки. Как припаять провода, мы рассказали чуть выше, в разделе как соединить части ленты.

Для примера возьмем один из самых популярных контроллеров для RGB светодиодных лент. Рассмотрев его мы можем увидеть, что с одной стороны располагается коннектор для подключения ленты, рядом с ним расположен ИК приемник для пульта дистанционного управления.Если у вас присутствует готовый коннектор или вы приобрели его отдельно, то мы предлагаем сразу соединить ленту с контроллером без удлинения проводов.Таким образом, где бы вы не применили ленту, то контроллер будет находиться в начале изделия, что поможет избежать лишних проводов.Но в данном варианте вас может поджидать один недостаток. Если ИК приемник будет заграждать какое-нибудь препятствие, например, занавес, то при попытке смены цвета или иной операции сигнал может не дойти с первого раза или вообще. В таком случае, вам придется отодвигать штору, подходить ближе, либо попытаться закрепить ИК приемник или ленту в зоне действия сигнала.Так же существует и иной способ устранить проблему – переместить контроллер в другое место. Для этого потребуется удлинить провода, любым доступным способом, например, с помощью коннектора – удлинителя, либо срезать штекер, нарастить провода, затем припаять его к этим проводам и соединить с контроллером. Как паять мы так же писали выше.

Если у вас отсутствует коннектор, то предлагаем приобрести его или припаять провода, как это сделать читайте выше.

Далее нам потребуется подключить контроллер к блоку питания.

Многие контроллеры для цветных светодиодных лент используют круглый штекер для соединения с проводом от блока питания.Если у вас уже присутствует блок питания с таким (круглым штекером), то просто соедините и пользуйтесь, предварительно убедившись в правильности подключения. (Относится к блокам питания 1-го типа. О типах читайте далее.)Если у вас блок питания второго типа, то следуйте дальнейшим действиям.Сначала нам нужно найти подходящий, круглый штекер.Его можно срезать с любого ненужного зарядного устройства, только предварительно проверьте подходит ли он по диаметру.Так же проверьте, где располагается плюс у заимствованного штекера. Узнать это можно посмотрев на корпус зарядного устройства с которого вы его одолжили. Стандартно плюс должен располагаться внутри в виде штырька, и минус будет корпусом разъема.  Проведем аналогичную проверку с гнездом для штекера в контроллере. Все должно совпадать.Мы одолжили подобный штекер у автомобильной зарядки.Убедившись в полном совпадении всех параметров.Далее срезав штекер мы припаяли к нему два провода – плюс и минус.После чего, зачистили концы провода с обратной стороны и подключили их к блоку питания (2 типа).Затем вставили штекер в контроллер и включили ленту.Блок питания может быть выполнен в нескольких видах. Самыми распространенными являются два вида.

Первый – все в одном корпусе, с готовым сетевым шнуром, остается только воткнуть штекер в коннектор ленты или контроллер и пользоваться.

 

Второй тип в виде обычного блока питания к которому нужно подключать все провода самостоятельно. Одним из достоинств второго вида является возможность использовать провода желаемого типа и длинны, а так же более хорошая охлаждаемость.

 

При подсоединении сетевого провода к блоку питания не имеет значения с какой стороны будет плюс, а с какой минус.

При подсоединении ленты очень важно соблюдать плюс и минус, иначе у вас будет салют, после которого все будет испорчено.

Для присоединения проводов зачистите изоляцию на концах провода на несколько сантиметров, затем воспользуйтесь отверткой, что бы ослабить винты, после этого вставьте провода и прочно зажмите их обратно.

Самое главное проверьте с какой стороны у вашей ленты плюс, а с какой минус. После этого проследите, как и куда идут провода, когда будите уверены в правильности, подключайте.

 

19-11-2016, 19:04 Detaillook

Источник: http://www.detaillook.com/17-kak-podklyuchit-svetodiodnyu-lentu-primery.html

Светодиодная подсветка, ночник из зарядного устройства | DEIF

А если нет цветных светодиодов ?

Почти у каждого валяется без дела не нужное зарядное устройство от старого телефона. Это отличная вещь, чтобы с ее помощью в несколько приемов изготовить себе светодиодную подсветку в прихожей, на лестничной клетке и крыльце, в шкафу, или как ночник, ну или везде, где позволяет фантазия.

Подсветка, ночник из зарядного устройства

Итак, берем зарядное устройство, напряжение у его на выходе около 5 вольт, и покупаем в магазине радиотоваров (а бывает, что и электротоваров) два или более светодиода. Количество и тип светодиодов во многом будет зависеть от того, что мы хотим получить и какие у нас цели или объекты подсветки.

Покупая светодиоды, нужно не забыть купить ленту ПВХ тут — www.avalon-pack.ru/izolenta.html, например, и монтажные разъемы для подключения, если у вас нет паяльника или вы не хотите заниматься пайкой, и один-два резистора. Представление об устройстве дает фото.

Осталось узнать о важных деталях.

Выбор и подключение светодиодов для подсветки, ночника

Первое, что надо знать, что светодиоды нужны на напряжение 3,0 вольта. Но работают они и при более низком напряжении. Светодиоды бывают белого, желтого, красного, синего и зеленого цветов.

Обычно рабочий ток у цветных светодиодов раза в два выше, чем у светодиодов белого и желтого света. Светодиоды работают только при правильной полярности. У светодиодов с гибкими выводами — более длинный контакт- это «плюс».

Соответственно более короткий вывод — это «минус».

Поскольку напряжение источника питания около 5 В (холостой ход) мы соединим два светодиода последовательно, что обеспечит питание каждого светодиода напряжением примерно в 2,5 В. Рабочий ток зададим резистором, который включен последовательно в цепь, как указано на фото.

Если будут применяться светодиоды белого цвета, то номинальное значение сопротивления резистора нужно около 300-400 Ом (стандартное значение- 360 Ом). Если светодиод красный или зеленый- сопротивление надо брать номиналом в 2 раза меньше.

А если будут использованы яркие светодиоды (на втором рисунке вверху), то они работают со значительными токами, величина резистора в зависимости от желаемой яркости может лежать в пределах десятков ом.

При очень низком сопротивлении яркие светодиоды будут сильно греться и их нужно прикрепить к металлическому радиатору площадью в 12-20 см квадратных. Можно подключить два светодиода и без резистора. Но тогда они будут работать не в номинальном режиме и быстрее выйдут из строя. А большие значения сопротивления уменьшат яркость свечения светодиодов.

Для подсветки лучше использовать светодиоды повышенной яркости, они имеют низкую цену, эквивалентную $0,15-0,3 (такой светодиод на первом фото, а яркие с радиатором на втором фото вверху, но они значительно дороже).

Ток потребления у светодиодов первого типа всего лишь 10-20 мА, что позволит использовать подсветку круглосуточно или за все темное время суток, обеспечивая очень и очень малое потребление электроэнергии. Эти светодиоды излучают пучок света направленного действия с различными заданными углами светового потока, о чем вам должны сообщить в магазине.

 К ним же продаются оптические линзы, которые формируют световой поток под тем углом, который задан купленной вами линзой (30 или 60 градусов).

Можно использовать такую подсветку из комбинации красных, синих, зеленых светодиодов для прихожей, в ванной, на крыльце частного дома, да мало ли где еще.

А как подключить большее количество светодиодов? Можно, если позволяет мощность (ток) зарядного устройства или блока питания. Для этого подключите несколько таких цепочек, как на фото (но уже обязательно с резисторами), параллельно. По меньшей мере можно пробовать включить 4-5 пар таких светодиодов, хотя экспериментировать можно и с большим их количеством.

Подключение светодиодов без зарядного устройства

А можно ли обойтись без блока питания, для которого может не найтись нужной розетки, либо он будет ухудшать дизайн? Можно, и здесь есть минимум два варианта. Первый — это подключить диоды непосредственно к электросети 220 В.

Правда, эту работу лучше делать человеку, имеющему твердые навыки и знания в электричестве, поскольку неосторожность при подключении может привести к трагедии.

Если вы уверены в своих навыках, то используйте один светодиод без блока питания, но включите два резистора, один к длинному гибкому выводу, а второй к короткому выводу светодиода номиналом каждый по примерно 22000 Ом (22 кОм). Выводы диода нужно наглухо заизолировать изолентой, исключив к ним касание.

Подключение производить только к электросети в обесточенном состоянии, если вы не подключаете светодиоды с помощью штепсельной вилки к электророзетке. Такие светодиоды могут быть подвешены только высоко в недоступном для других месте.

Такая подсветка будет светить с гораздо меньшей яркостью, так как из соображений исключения пробоя устройства обратным напряжением, выбраны номиналы резисторов. Пониженная яркость также обусловлена и питанием светодиода лишь одной полуволной переменного напряжения.

Улучшить яркость можно включением двух светодиодов параллельно, однако выводы надо соединять противоположные- на каждой стороне длинный соединять с коротким (и к каждому объединенному выводу по резистору). В итоге питание будет осуществляться в данный момент одного из светодиодов положительной полуволной, а второго отрицательной. Практика, однако, показывает, что при таком подключении светодиоды быстро выходят из строя.

Второй метод отказа от блока питания заключается в использовании гальванического элемента питания (батарейки) либо аккумулятора от телефона. Используется схема 1:1, как на фото, но вместо блока питания берется элемент питания.

Хорошо подходит для этого «плоская» батарейка 3R12 с гибкими выводами на 4,5 В, либо пальчиковые батарейки в специальных контейнерах, которые продаются в магазинах радиотоваров.

К контейнеру с двумя «пальчиковыми» батарейками можно подключить один светодиод, к четырем элементам — два светодиода последовательно, как на фото. Опыт показал, что светодиоды с питанием от элемента 3R12 излучают свет много месяцев без существенной разрядки.

Точно также для этих целей можно использовать и аккумуляторы от радиотелефонов (которые надо заряжать), но там питание 3,6 В, когда можно подключить один светодиод или несколько их параллельно.

Как определить полярность напряжения в блоках питания

Да, блок питания от мобильного телефона имеет не подходящие разъемы для подключения питания к другим потребителям, что делать? В зарядном от «Нокиа» цилиндрический разъем имеет в центре «плюс», снаружи – минус. В других- просто отрежьте провод. Один провод будет «плюс», один – «минус». (Читайте следующую страницу, нумерация — ниже)

Добавьте статью в закладки, чтобы вновь вернуться к ней, нажав кнопки Ctrl+D .Подписку на уведомления о публикации новых статей можно осуществить через форму “Подписаться на этот сайт” в боковой колонке страницы. Если что непонятно, то, читайте здесь.

Внимание! АВТОРСТВО ВСЕХ СТАТЕЙ ЗАЩИЩЕНО. Копирование и публикация на других сайтахстатьи или ее фрагментов без согласия автора или без активной гиперссылки ЗАПРЕЩЕНЫ.

Источник: https://deepcool-ma.com/svetodiodnaya-podsvetka-nochnik-iz-zaryadnogo-ustrojstva/.html

Плюс и минус у светодиода. Определяем полярность LED

А если нет цветных светодиодов ?

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Другие способы определения полярности

Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.

Схема самодельного пробника

При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

И последний способ изображен на фото ниже.

Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

Оцените, пожалуйста, статью. Мы старались:) (1 5,00 из 5)
Загрузка…

Источник: https://SvetodiodInfo.ru/texnicheskie-momenty/polyarnost-svetodioda.html

Полярность светодиода: как определить плюс и минус

А если нет цветных светодиодов ?

В промышленной аппаратуре и в радиолюбительских конструкциях широко применяются индикаторные и сверхъяркие светодиоды (LED). Как  и любые другие диоды, LED имеют два вывода – анод и катод (плюс и минус). Поэтому они должны подключаться с соблюдением полярности. Определить полярность светодиода можно несколькими способами:

  • путем измерений;
  • по внешнему виду (визуально);
  • подключением к источнику питания;
  • из технической документации.

Как определить полярность тестером (мультиметром)

Практически у всех профессионалов и у большинства радиолюбителей под рукой есть цифровые или стрелочные мультиметры. С их помощью можно легко определить полярность полупроводникового диода, проверить его работоспособность. Измерения нужно проводить в режиме омметра.

У многих современных мультиметров есть специальный режим – «тест диода».

Для определения полярности щупы тестера подключают к диоду и следят за показаниями прибора. Если прибор показывает «бесконечное» сопротивление, то щупы следует поменять местами. Если мультиметр покажет некоторое конечное значение сопротивления, это означает, что прибор подключен с соблюдением полярности, и мы определили, где у светодиода плюс и минус.

Есть один важный нюанс. У некоторых стрелочных приборов полярность щупов в режиме измерения напряжения и в режиме омметра не совпадают.

 Такой особенностью обладают, например, старые тестеры ТЛ – 4М. Поэтому желательно проверить, нет ли расхождений в полярности тестера в различных режимах измерения с помощью другого прибора или вольтметра постоянного напряжения.

Мультиметром можно воспользоваться и для определения полярности. Порядок действий такой же, как при определении плюса и минуса обычного диода. При исправном светодиоде и правильном его подключении он даже может начать светиться.

Однако, этот способ определения полярности срабатывает далеко не всегда. Дело в том, что падение напряжения открытого светодиода может составлять 1.5 – 3.2 и более вольт. Это значительно больше, чем у обычного полупроводникового диода.

 

Величина падения напряжения зависит от цвета и мощности светоизлучающего диода. Тестеры с низковольтным питанием не имеют на своих зажимах достаточного напряжения для открытия светодиода. Такими приборами измерения выполнить не удастся.

Как определить полярность по внешнему виду

Существует множество типов корпусов светодиодов. Широко распространены светоизлучающие диоды в цилиндрических корпусах диаметром 3, 5 и более миллиметров.

Выпускается много SMD светодиодов для поверхностного монтажа, которые различаются как типом корпуса, так и размерами кристаллов. Мощные сверхъяркие светодиоды размещаются на теплоотводах и имеют планарные плоские выводы.

Опытные специалисты без труда определяют назначение выводов по внешнему виду.

Проще всего определять полярность мощных светодиодов. У них, как правило, выводы промаркированы знаками «+» и «-».

Неплохо дело обстоит со светодиодами в цилиндрических корпусах. У них полярность можно определить по нескольким признакам. Например, внутри корпуса светоизлучающего диода можно рассмотреть два электрода имеющие разную площадь.

У катода площадь электрода заметно больше. Этот электрод является минусом. Еще одним признаком, по которому можно определить катод цилиндрического led, это скос на юбке прибора. У новых выводы имеют различную длину.

Более длинный вывод подсказывает, где плюс у светодиода (анод).

Светодиоды для поверхностного монтажа тоже имеют отличительные признаки назначения выводов. Многие SMD LED имеют специальный скос (ключ) на одном из углов. Ключ указывает на минус (катод).

На корпусах некоторых типов SMD светодиодов наносятся специальные символы позволяющие определить полярность прибора. Некоторые из них показаны на фото.

Для закрепления изложенного материала рекомендуем посмотреть видео о том, как определить визуально где у светодиода плюс, а где минус

Определение полярности путем подачи питания

Наиболее наглядным способом определения полярности LED является подключение к источнику напряжения. Этот метод позволяет проверить исправность светодиода и определить его полярность.

Для проведения «эксперимента» потребуется источник постоянного напряжения. Им может послужить блок питания или аккумуляторная батарея. Удобно использовать лабораторный блок питания с плавной регулировкой напряжения и вольтметр постоянного тока.

Светодиод нужно подключить к блоку питания и постепенно поднимать напряжение. При правильном подключении он должен начать светиться. Если при достижении 3 – 4 вольт LED не начал светиться, следует изменить полярность подключения и повторить эксперимент. При зажигании светодиода не стоит продолжать увеличивать напряжение, т.к. он может сгореть.

Вместо регулируемого блока питания, можно воспользоваться любой батареей напряжением 4.5 – 12 вольт. В качестве батареи можно использовать несколько элементов на 1.5 вольта, соединенных последовательно, аккумулятор от сотового телефона или автомобиля.

Подключать светодиод к батарее напрямую нельзя. Он может выйти из строя.

Для проверки работоспособности последовательно со светодиодом нужно подключить токоограничивающий резистор. Сопротивление резистора для маломощных светоизлучающих диодом может составлять от 680 Ом до нескольких кОм. Для мощных светодиодов подойдет резистор в несколько десятков Ом.

Определение полярности по технической документации

Исчерпывающую информацию о светодиодах можно получить из технической документации завода производителя. Она отражает данные о массе и габаритах led, его цоколевке и электрических параметрах. При крупных поставках такая документация обязательно имеется в сопроводительных документах.

К сожалению, продавцы, торгующие в розницу, не всегда могут предоставить интересующие данные. К счастью, зная марку светоизлучающего прибора, информацию о назначении его выводов всегда можно найти в интернете.

Итоги

Мы рассмотрели несколько способов как определить плюс и минус светодиода. Их можно применять по одному, или перепроверять результат несколькими способами. Ведь каждый из них не является идеальным.

Визуально и тем более по технической документации невозможно судить о работоспособности данного экземпляра LED. С помощью тестера трудно прозвонить мощный сверхъяркий светоизлучающий диод.

Проверка путем подачи напряжения дает точный результат, но требует принятия мер предосторожности.

Источник: http://ledno.ru/svetodiody/polyarnost-led.html

Синие светодиоды: мода против здравого смысла

А если нет цветных светодиодов ?

Сергей Асмаков

Голубая мечта

Синяя роза — эмблема печали

Эффект Пуркинье

Не в фокусе

Тоска зеленая, бессонница синяя

«Синих» — с глаз долой!

На протяжении уже нескольких лет синие индикаторы являются одним из наиболее модных и распространенных украшений самых разнообразных устройств — начиная от портативных медиаплееров и мобильных телефонов и заканчивая компьютерами и системами домашнего кинотеатра. Однако у многих пользователей синее сияние вызывает раздражение и дискомфорт. Как выяснилось, проблема вызвана отнюдь не различием вкусов и личных пристрастий, а вполне объективными причинами.

Голубая мечта

Сегодня синие светодиоды встречаются практически везде: в компьютерах и периферийных устройствах, бытовой технике, автомобилях, мобильных телефонах, портативных медиаплеерах и т.д. Почему же именно синий цвет в одночасье стал таким модным? Чтобы ответить на этот вопрос, совершим небольшое путешествие во времени: перенесемся в недавнее прошлое — последнее десятилетие XX века.

Работа по созданию светодиодов, способных излучать синий свет, продвигалась с большим трудом. Инженеры никак не могли сдвинуться с мертвой точки. На протяжении уже двух с лишним десятилетий серийно выпускались светодиоды красного, зеленого, желтого и янтарного цветов. Однако синий цвет стал для разработчиков полупроводниковых приборов настоящим камнем преткновения.

Первым найти решение этой, как уже казалось, абсолютно невыполнимой задачи удалось японскому инженеру Шуджи Накамура (Shuji Nakamura).

Он понял, что главная ошибка его коллег состоит в том, что они пытаются адаптировать для изготовления синих светодиодов технологический процесс, который уже длительное время применяется для производства аналогичных приборов с красным, желтым и зеленым свечением.

Чтобы не наступать на те же грабли, Накамура начал решать задачу с чистого листа и в результате разработал совершенно новую технологию, которая позволила не только получить светодиоды столь желанного синего цвета, но и значительно повысить яркость излучаемого этими полупроводниковыми приборами света.

Разумеется, освоение любой новой технологии сопряжено с определенными издержками.

На первых порах производство синих светодиодов было значительно более сложным и дорогостоящим по сравнению с хорошо отлаженным технологическим процессом, применявшимся для изготовления аналогичных компонентов, излучающих красный или зеленый свет. А следовательно, синие светодиоды были значительно дороже красных, зеленых и желтых.

Как это уже не раз бывало в истории человечества, длительный период ожидания в сочетании с дороговизной и сложностью изготовления стали причиной того, что синие светодиоды моментально попали в разряд ультрамодных аксессуаров.

Кроме того, начало серийного производства синих светодиодов совпало с наступлением нового тысячелетия, что оказалось весьма символичным. В 2000 году в продаже появились серийно выпускаемые устройства, оснащенные синими светодиодами. Синяя подсветка сразу же стала признаком престижа, «крутизны» и принадлежности к высоким технологиям.

Дизайнеры, занимающиеся созданием внешнего облика электронной техники и компьютеров, в тот период были практически поголовно помешаны на синем свечении.

Впрочем, волна «синего сумасшествия» затронула не только дизайнеров.

Три-четыре года назад «продвинутых» отечественных автовладельцев охватила самая настоящая эпидемия: синие лампочки и светодиоды устанавливали вместо штатных габаритных огней и указателей поворота, использовали в качестве украшений форсунок омывателей стекол и даже выхлопных труб.

К счастью, эта уродливая мода быстро прошла — отчасти потому, что экстравагантная синева за год-другой многим успела надоесть, а отчасти из-за введения штрафов за несоблюдение технических требований, предъявляемых к внешним световым приборам.

Надо сказать, что подобные парадоксы возникали и раньше. Достаточно вспомнить середину XIX века — начало промышленной добычи алюминия. На первых порах технологический процесс был очень дорогим, и соответственно цена этого материала была чрезвычайно высокой.

Например, в 1852 году килограмм алюминия оценивали примерно в 1200 долл.

, что заметно превышало удельную стоимость золота! Неудивительно, что в то время изделия из алюминия (в частности, посуда и украшения) ценились значительно выше товаров, изготовленных из благородных металлов, — даже несмотря на низкую прочность и невзрачный вид.

Но вернемся в начало нынешнего столетия. Потребовалось не так много времени, чтобы отладить технологию производства синих светодиодов.

Благодаря значительному росту объемов производства этих комплектующих цены на них стали постепенно снижаться.

По мере того как синие светодиоды становились более доступными, они все чаще использовались в самых разных устройствах. И вот тут-то появились проблемы.

Синяя роза — эмблема печали

Как оказалось, далеко не все пользователи разделяют взгляды дизайнеров, одержимых идеей осчастливить прогрессивное человечество завораживающим синим свечением.

По данным опросов, многих покупателей электронных устройств яркие синие светодиоды настолько раздражают, что люди предпочитают заклеивать их или даже обрезать идущие к ним провода.

Вот что рассказал нам один из владельцев USB-концентратора с синим светодиодным индикатором: «Каждый раз, когда это устройство попадало в поле зрения, у меня возникало такое ощущение, что в глаз впивается острая игла.

Это происходило даже в тех случаях, когда устройство располагалось сбоку, а исходящий от него синий свет воспринимался исключительно периферийным зрением. В конце концов мне это надоело, и я закрасил злополучный светодиод черной краской».

Кстати, аналогичная история произошла весной этого года в нашей тестовой лаборатории, когда мы сравнивали акустические системы для ПК (см. публикацию «Акустика для ПК: 2.0 или 5.1?» в № 5’2007). Всего за несколько минут работы яркий синий светодиод, направленный точно в правый глаз, настолько надоел, что от греха подальше его заклеили лейкопластырем до окончания испытаний.

Почему же такие проблемы возникли именно с синими светодиодами? Неужели синий настолько отличается от других цветов — красного, зеленого или желтого? А ведь и в самом деле отличается — по крайней мере, с точки зрения нашего с вами восприятия.

Физиологи утверждают, что синий свет вызывает большее зрительное напряжение и более утомителен для глаз по сравнению с другими цветами. А, как уже было упомянуто, из-за использования принципиально иной технологии изготовления синие светодиоды примерно в 20 раз ярче, чем зеленые, красные или желтые. Есть и другие объективные факторы.

Эффект Пуркинье

Синий свет кажется более ярким в условиях слабой освещенности — например ночью или в затемненном помещении. Это явление называется эффектом Пуркинье и происходит вследствие того, что палочки (чувствительные элементы сетчатки глаза, воспринимающие слабый свет в монохроматическом режиме) наиболее чувствительны к излучению сине-зеленой части видимого спектра.

На практике это приводит к тому, что синие индикаторы или эффектная подсветка устройства (например, телевизора) нормально воспринимается при ярком освещении — например когда мы выбираем подходящую модель в демонстрационном зале супермаркета.

Однако тот же индикатор в полутемном помещении будет гораздо сильнее отвлекать от изображения на экране, вызывая сильное раздражение.

Эффект Пуркинье проявляется и в том случае, когда источник света находится в зоне периферийного зрения. В условиях средней и слабой освещенности наше периферийное зрение наиболее чувствительно к оттенкам синего и зеленого цветов.

 С точки зрения физиологии это имеет вполне логичное объяснение: дело в том, что на периферийных участках сетчатки сосредоточено гораздо больше палочек, чем в центре.

Таким образом, синий свет способен оказывать отвлекающее воздействие даже в том случае, если взгляд в данный момент не сфокусирован на его источнике.

Таким образом, наличие синих светодиодов на панелях мониторов, телевизоров и других устройств, которые используются в затемненных помещениях, является серьезным конструктивным недостатком. Однако из года в год разработчики большинства компаний повторяют эту ошибку.

Не в фокусе

Глаз современного человека может различать наиболее тонкие детали в зеленой и красной частях видимого спектра. Но мы при всем желании не способны столь же четко различать объекты синего цвета. Наши глаза просто не могут нормально сфокусироваться на синих объектах. Фактически человек видит не сам объект, а лишь размытый ореол яркого синего света.

Это объясняется тем, что длина волны синего света меньше, чем у зеленого (под который «оптимизированы» наши глаза). Вследствие рефракции, наблюдающейся при прохождении через стекловидное тело глаза, проецируемый на сетчатку свет разлагается на спектральные составляющие, которые из-за разницы в длине волны фокусируются в различных точках.

Поскольку наилучшим образом глаз фокусируется на зеленой составляющей части видимого спектра, синяя оказывается сфокусированной не на сетчатке, а на некотором расстоянии перед ней — в результате мы воспринимаем синие объекты несколько размытыми (нечеткими).

Кроме того, из-за меньшей длины волны синий свет в большей степени подвержен рассеянию при прохождении через стекловидное тело, что также способствует возникновению ореолов вокруг синих объектов.

Чтобы рассмотреть детали объекта, освещенного исключительно синим светом, придется сильно напрягать глазные мышцы. При выполнении подобных «упражнений» на протяжении длительного времени возникает сильная головная боль.

В этом может убедиться на собственном опыте любой обладатель мобильного телефона, оснащенного клавиатурой с синей подсветкой.

В темноте различить символы на клавишах такого аппарата значительно сложнее, чем на трубках, оснащенных зеленой или желтой подсветкой.

Медики установили, что центральная область сетчатки глаза имеет пониженную чувствительность к синей части спектра. Как полагают ученые, таким образом природа сделала наше зрение более острым.

Кстати, об этом свойстве зрения осведомлены охотники и профессиональные военные: например, для повышения остроты зрения в дневное время снайперы иногда надевают очки с желтыми стеклами, отфильтровывающими синюю составляющую.

Тоска зеленая, бессонница синяя

Неблагоприятное влияние искусственного синего света на наш сон — это не гипотеза, а доказанный научный факт. Результаты многочисленных экспериментов свидетельствуют, что синий свет способен изменять ход внутренних биологических часов человека, вызывая нарушения режима сна.

Своеобразная реакция наших глаз и мозга именно на синий свет является одним из следствий эволюционного процесса, в ходе которого организм человека адаптировался к естественным условиям жизни в природной среде нашей планеты.

Как известно, под действием синего света в крови снижается уровень мелатонина («гормона сна»), играющего ключевую роль в регулировании цикла сна. Если говорить упрощенно, то, когда уровень мелатонина в крови высок, человек засыпает, а при снижении содержания этого гормона до определенного уровня — просыпается.

Таким образом, синий свет является своеобразным природным будильником, возвращающим к бодрствованию многих животных, когда небо окрашивается в синий цвет после восхода солнца.

Как показали медицинские исследования, излучения даже одного ярко-синего светодиода оказывается достаточно для того, чтобы привести в действие этот природный механизм и снизить уровень мелатонина.

Иными словами, установка в спальне будильника или музыкального центра с синей подсветкой — далеко не самая удачная идея.

Многие физиологи считают, что негативное воздействие на наш сон может оказать «доза» синего света, полученная от мощной энергосберегающей лампы с «холодным» свечением, экрана телевизора или монитора ПК даже за пару часов до отправления ко сну.

Однако нарушения сна — это еще далеко на самое страшное последствие передозировки синего света. Некоторые исследователи полагают, что систематическое воздействие даже очень слабого источника синего света во время сна может привести к ослаблению иммунной системы и таким образом отрицательно повлиять на здоровье.

Ученые собрали уже большое количество данных, косвенно свидетельствующих о том, что в группах людей, подверженных хаотическому воздействию синего света, не связанного с естественными циклами чередования дня и ночи, количество больных, страдающих онкологическими заболеваниями, превышает среднестатистические показатели.

Впрочем, пока это лишь гипотеза.

«Синих» — с глаз долой!

Еще несколько лет тому назад производители оборудования начали получать от покупателей жалобы на дискомфорт, который вызывают ярко-синие светодиоды. Однако, по большому счету, воз и ныне там. Лишь единицы прислушались к гласу народа и изменили свой подход к дизайну.

Например, представители компании Logitech недавно сообщили, что в конструкцию ряда проектируемых продуктов были внесены соответствующие изменения.

К сожалению, в большинстве своем производители не видят (или не хотят видеть) в этом серьезной проблемы и продолжают регулярно выбрасывать на рынок устройства, усеянные ярко-синими светодиодами.

Что ж, пока мода одерживает верх над здравым смыслом, пользователям придется самостоятельно позаботиться о своем комфорте и здоровье.

Мы же присоединяемся к группе противников ярко-синих светодиодов и приводим во врезке несколько советов для тех, кто хочет избавить себя и своих близких от навязчивой и потенциально небезопасной иллюминации.

Доверяйте своим ощущениям и будьте бдительны: синие светодиоды действительно могут представлять угрозу для вашего здоровья.

КомпьютерПресс 11’2007

 

Источник: https://compress.ru/article.aspx?id=18304