Ветрогенератор с генератором без магнитного залипания

Содержание

Как уменьшить залипания в генераторе на постоянных магнитах

Ветрогенератор с генератором без магнитного залипания
Основная проблема генераторов на постоянных магнитах залипание, которое можно существенно снизить некоторыми методами. Залипание это притяжение магнитов ротора к зубам статора.

Самое большое залипание это когда количество магнитов на роторе равно количеству зубов на статоре, поэтому однофазные генераторы большой мощности не нашли большого применения из-за залипания, которое дает большие вибрации.

Трехфазная классическая система позволяет использовать в 1,5 раза меньше магнитных полюсов, и только половина из них в определенные моменты становится на против зубов статора.

Таким образом если статор состоит из 36 зубов, и намотано 36 катушек, то однофазный вариант должен иметь 36 магнитных полюсов. Притяжение одного неодимового магнита к примеру 100гр, значит чтобы стронуть однофазный генератор понадобится приложить усилие 3,6 килограмм.

Если генератор трехфазный, то количество магнитных полюсов 24 при 36 катушек, и так-как магниты распологаются на роторе через равные промежутки, то в определенные моменты только 12 магнитов становятся напротив зубов статора. Здесь уже получается что чтобы стронуть ротор с места надо приложить усилие 1,2 кг. Как видно разница по залипаниям в сравнении с однофазным генератором меньше в три раза.

Но часто из-за использования мощных неодимовых магнитов залипание получается очень большое и чтобы его снизить магниты располагают под скосом относительно зубов статора.

Величину скоса опрпделяет расстояние зуб+паз статора. К примеру если ширина зуба 10мм, а паз 5 мм, то зуб+паз равно 15 мм, на это рассточние делается скос магнитов.

Как измерить величину залипания можно почитать здесь Измерения момента страгивания генератора

Скос магнитов

Скос особенно эффективен на длинных генераторах, где из-за длинны общий скос получаетися на небольшой градус, а в коротких генераторах скос получается очень выражен и на этом скосе теряется мощность магнитов, так-как они замыкаются через кончики зубов, и магнитные поля не идут через статор.

Потери на скосе, особенно в коротких генераторах могут быть очень большими.

К примеру делая скос магнитов на роторе автогенератора я потерял половину мощности, при не значительном снижении залипания.

А вот асинхронные двигатели часто делают со скосом, где залипание существенно снижается при незначительной потери в мощности генератора, порядка 10-15%.

Так-же на скос влияют и размеры магнитов по отношению к размерам зубам статора. К примеру если генератор с неявнополюсной обмоткой, например статор имеет 36 зубов, но намотано 12 катушек, по три на фазу, то здесь используется шестиполюсной ротор.

Значит магнитные полюса гораздо больше по площади чем зубы статора, и перекрываают сразу несколько зубов статора.

Так-как магнит перекрывает несколько полюсов, то его сила притяжения как-бы размазывается на несколько зубов, и момент страгивария уменьшается.

Сдвиг магнитов

Так-же уменьшают залипание генератора методом сдвига магнитов, каждый магнит сдвигается на некоторую величиру относительно разметки. К примеру если ротор размечен на 24 полюса, то магниты клеются по разметке, но расстояние между ними не равное, а к каждому магниту добавляют по 1-2 мм.

Таким образом магниты сдвигаются относительно зубов и общая сила притяжения магнитов падает, так-как они не на против зубов, а если один встает на против зуба, то другие в группе удалены на некоторое расстояния. Но такой способ тоже имеет потери из-за не синхронного наростания тока в катушках.

Скос и сдвиг вместе

Так-же чтобы оптимизироваать потери и залипания делают, комбинируют два метода. Делают небольшой скос в ползуба и сдвигают магниты на небольшую величину. Но и этот способ не избавляет от потерь связанных с замыканием магнитных полей магнитов через наконечники статора.

Многофазные генераторы

Еще один интересный способ борьбы с залипанием, это изготовление многофазных генераторов. К примеру если взять статор на 24 зуба, то максимально можно намотать 16 фаз, по две катушки на фазу, которые мотаются на против друг друга. Эти фазы можно группировать в звезды или треугольники по три фазы на группу, тогда получится четыре группы.

Или каждую фазу выпрямлять и соединять как угодно.

В этом случае с большим количеством фаз, в данном случае 16, количество магнитов на роторе 22, и только два магнита из которых в определенные моменты становятся на против зубов, а остольные гдето между, и взаимно компенсируют силы притяжения к зубам, так-как шаг магнитов не соответствует шагу зубов и расстояние всегда разное.

Для сравнения возьмем три одикаковые генератора, но один однофазный, другой трехфазный, а третий многофазный и проанализируем их залипания.

Во всех случаях намотано 36 катушек, но на роторе однофазного генератора 36 магнитов, и так получается что они в определенные моменты все становятся на против зубов статора образуя одно большое залипарие равное силе 36 магнитов.

К примеру если сила притяжения одного магнита равна 100 гр, то 36 магнитов дадут залипание 3,6 кг.

Трехфазный генератор будет иметь 24 магнита, из которых только 12 магнитов в определенные моменты будет вставать ровно на против зубов. Залипание получается трехфазного в три раза меньше однофазного и составляет в данном случае 1,2 кг.

Многофазный генератор, в данном случае 36 катушек по две на фазу, получается 18 фаз которые потом можно соединять как угодно. Магнитов здесь можно использовать разное число, но оно должно быть четным и не менее 4 чтобы фазы работали.

К примеру возьмем для многофазного количество магнитов 30, при этом количистве магнитов всегда только два магнита попадают напротив зубов статора, а остольные гдето между зубов. Общее залипание всего 200 рамм, разница с трехфазным в 10 раз, а с однофазным в 30 раз.

Цифры разницы просто огромные.

Минус многофазных генераторов в большом количестве выпрямительных мостов, на которых тоже теряется мощность генератора, а так-же удорожание конструкции в сязи с этими выпрямительными мостами, которых для вышеописанного многофазника надо 6 шт.полумостов если соединять в шесть звезд или треугольников, или если фазы выпрямлять по отдельности, то выпрямительных мостов надо 18 шт.

Нестандартная обмотка трехфазного генератора

Еще одни способ похож на предыдущий, он тоже исполюзует число магнитов такое, чтобы как можно меньше магнитов в определенные моменты попадало на зубы статора. В статорах с четным количеством полюсов наименьшее количество магнитов попадающих под зубы возможно 2 магнита.

В статорах с нечетным количеством зубов можно рассчитать чтобы всего один магнит в определенный момент вставал напротив зуба, а остольные гдето между или около, но не напротив.

В этом случае залипание сводится к силе притяжения всего одного магнита, силу притяжения каторого могут компенсировать другие магниты, тогда залипание вообще может равняться нулю. Но статоры с нечетным количеством зубов встречаются очень рпдко.

Количество полюсов может быть любым, но обмотка генератора трехфазная, и чтобы вся система работала, катушки каждой фазы наматывают на разных зубах и в разных направлениях. Такой подход избавляет от залипаний и при этом нет необходимости мотать многофазные генераторы и ставить много диодных мостов для выпрямления фаз.

Количество полюсов выбирают так, чтобы наибольший общий делитель был как можно меньше. Например если брать схему 24/36, то наибольший общий делитеть равен 12, получается что 12 магнитов будут одновременно залипать, а если взять 26 магнитов/ 36 зубов, то общий наибольший делитель равен 2.

Для примера порядок намотки классического трехфазного генератора на 24 магнита и 36 катушек, и трехфазного генератора на 28 магнитов 36 катушек. Катушки фаз мотаются начиная с первого зуба, А-первая фаза, B-вторая фаза, C-третья фаза.

Размер букв соотаетствует направлению намотки, бльшая буква например надо мотать в лево, а маленькая на право, или наоборот, тут как начнете мотать статор, направление намотки разное.

24/36 – ABCABCABCABCABCABCABCABCABCABCABCABC 26/36 – ABCcabcabBCABCAabcabcCABCABbcabcaABC

Как видно во втором случае в отличие от классической намотки катушки фаз мотаются не только на разные зубы, но и в разных направлениях. Такая схема намотки имеет небольшие потери и нормальную синусойду, и ни чем не отличается от классической схемы, но дает возможность применять любое количество полюсов на роторе.

Источник: http://e-veterok.ru/zalipanie_generatora.php

Делаем ветрогенератор на неодимовых магнитах

Ветрогенератор с генератором без магнитного залипания

Аксиальный ветрогенератор, который работает на неодимовых магнитах, впервые начали массово изготавливать в странах Запада. И это были вовсе не заводские изделия, а плод труда местных гаражных мастеров, поставивших себе на службу явление левитации.

Серьезной популярности именно такие модели ветряка обязаны массовому распространению и дешевизне неодимовых магнитов. Постепенно комплектующие и схемы изготовления стали распространятся по всему миру и в настоящее время магнитный аксиальный ветрогенератор завоевывает признание на просторах Российской Федерации.

Ниже описана последовательность создания одной из самых удачных моделей такого ветряка.

Процесс создания ротора

Основой генератора автор разработки решил сделать ступицу автомобиля с дисками тормоза, поскольку она мощная, надежная и идеально сбалансированная.

Начав делать ветряк своими руками, в первую очередь следует подготовить основу для ротора — ступицу, — почистить ее от грязи, краски и смазки. После чего приступить к наклейке постоянных магнитов. Для создания данного ветрогенератора, их было использовано по двадцать штук на диске.

Размер неодимовых магнитов составил 25х8 миллиметров. Однако, и их количество, и их размер могут варьировать в зависимости от целей и задач человека, своими собственными руками создающего ветрогенератор.

Однако всегда будет правильным, для получения одной фазы, равенство количества полюсов числу неодимовых магнитов, а для трех фаз — выдержка соотношений полюсов и катушек — два к трем или три к четырем.

Магниты следует располагать учитывая чередование полюсов, к тому же максимально точно, но прежде, чем приступить к их наклейке, нужно либо создать бумажный шаблон, либо прочертить линии, делящие диск на сектора.

Чтобы не перепутать полюса, делаем отметки на магнитах. Главное — выполняем следующее требование — те магниты, которые стоят напротив друг друга, должны быть повернуты разными полюсами, то есть притягиваться.

Магниты приклеиваются к дискам при помощи супер-клея и заливаются. Также нужно сделать бордюрчики по краям дисков и в их центре, либо намотав скотча, либо вылепив из пластилина для недопущения растекания.

Фазы — что лучше — три или одна?

Многие любители электрической техники идут по пути наименьшего сопротивления и, чтобы не заморачиваться, останавливают свой выбор на однофазном статоре для ветряка.

Однако у него имеется одна неприятная особенность, нивелирующая простоту сборки, — это вибрация в нагруженном состоянии, по причине непостоянства отдачи тока.

Ведь амплитуда такого статора скачкообразна, — достигая максимума, когда неодимовые магниты располагаются над катушками, а после падая до минимума.

А вот, когда генератор сделан по трехфазной системе, то вибрации отсутствуют, и показатель мощности ветряка имеет постоянное значение. Причина такого отличия заключается в том, что ток, падая в одной фазе, в то же время нарастает в другой.

И в итоге, ветрогенератор, работающий в трехфазной системе, может быть более эффективным до 50 %, чем точно такой же, но использующий однофазную систему.

И главное, — нагруженный трехфазный генератор не дает вибрации, следовательно, мачта не дает повода для жалоб на ветрогенератор в надзирающие органы недоброжелателям из числа соседей, поскольку не создает надоедливого гула.

Способ намотки катушки статора ветряка

Для того, чтобы сделанный своими руками ветрогенератор на неодимовых магнитах работал с максимальной отдачей, статорные катушки следует рассчитывать. Однако большинство мастеров предпочитают делать их на глаз.

К примеру, тихоходный генератор, способный заряжать 12 В аккумулятор, начиная со 100 — 150 оборотов за минуту, должен иметь во всех катушках от 1000 до 1200 витков, поровну разделенное между всеми катушками.

Увеличение количества полюсов ведет к росту частоты тока в катушках, благодаря чему генератор, даже при малых оборотах, дает большую мощность.

Намотка катушек должна производиться по возможности более толстыми проводами, с целью снижения сопротивления в них. Делать это можно на оправке, либо на самодельном станке.

Для того чтобы разобраться, какой потенциал мощности имеет генератор, покрутите его с одной катушкой, поскольку, в зависимости от того, в каком количестве будут установлены неодимовые магниты и какова их толщина, данный показатель может существенно отличаться.

Измерение проводятся без нагрузки при необходимом числе оборотов.

Например, если генератор при 200 оборотах за минуту обеспечивает напряжение в 30 В, имея сопротивление в 3 Ом, то следует из 30 В вычесть 12 В (напряжение питания аккумулятора) и полученный результат — 18 делим на 3 (сопротивление в омах) получаем 6 (сила тока в амперах), которые и пойдут от ветрогенератора на зарядку АКБ. Однако, как показывает практика, по причине потерь в проводах и диодном мосту, реальный показатель, который будет производить магнитный аксиальный генератор, будет поменьше.

Магниты для создания ветрогенератора лучше брать в форме прямоугольника, поскольку их поле распространяется по длине, в отличие от круглых, поле которых сосредотачивается в центре.

Катушки, как правило, мотают круглыми, хотя лучше делать их несколько вытянутыми, что обеспечивает больший объем меди в секторе, а также более прямые витки.

Отверстие внутри катушек должно быть равно или превышать ширину магнитов.

Толщина статора должна быть такой же что и магниты. Форма для него обычно фанерная, для прочности под катушки и поверх них кладут стеклоткань, и все это заливается эпоксидной смолой.

Для того, что бы не допустить прилипания смолы к форме, последнюю смазывают любым жиром либо применяют скотч.

Провода предварительно выводят наружу и скрепляют между собой, концы каждой фазы после этого соединяют треугольником либо звездочкой.

Мачта для ветрогенератора

Мачту на которой будет расположен данный генератор, можно делать высотой от 6 и выше метров, чем выше, тем больше скорость ветра. Под нее следует вырыть яму и залить основание из бетона, а трубу укрепить таким образом, чтобы магнитный аксиальный ветрогенератор, сделанный своими руками, можно было опускать и поднимать. Делать это можно при помощи механической тали.

Винт ветряка

Его делают из поливинилхлоридных труб, чей оптимальный для этого диаметр — 160 мм. К примеру, ветрогенератор, работающий на принципе магнитной левитации, с диаметром в два метра и шестью лопастями, при скорости ветра в 8 метров за секунду, способен обеспечить мощность до 300 Вт.

Как повысить мощность ветряка?

Для подъема мощности ветрогенератора можно использовать магниты. Попросту на магниты, которые уже установлены наклеить еще по одному такому же или более тонкому. Другой способ основан на установке в катушки металлических сердечников, — пластин трансформатора.

Это обеспечит усиление магнитопотока в катушке, однако вызывает небольшое залипание, которое, впрочем, совершенно не ощущается шестилопастным винтом. Стартует такой ветрогенератор при ветре в 2 м/с. Благодаря применению сердечников генератор получил увеличение мощности с 300 до 500 Вт/ч при ветре в 8 м/с.

Также следует уделять внимание форме лопастей, — малейшие неточности снижают мощность.

Источник: https://mirenergii.ru/energiyavetra/delaem-vetrogenerator-na-neodimovyx-magnitax.html

Ветрогенератор на неодимовых магнитах

Ветрогенератор с генератором без магнитного залипания

Неодимовый магнит – это редкоземельный металл, обладающий стойкостью к размагничиванию и способностью намагничивать некоторые материалы. Используется при изготовлении электронных устройств (жесткие диски компьютеров, металлодетекторы и т.д.), медицине и энергетике.

Неодимовые магниты используются при изготовлении генераторов, работающих в различных видах установках, вырабатывающих электрический ток.

В настоящее время генераторы, изготовленные с использованием неодимовых магнитов, широко используются при изготовлении ветровых установок.

Основные характеристики

Для того, чтобы определиться в целесообразности изготовления генератора на неодимовых магнитах, нужно рассмотреть основные характеристики данного материала, которыми являются:

  • Магнитная индукция В — силовая характеристика магнитного поля, измеряется в Тесла.
  • Остаточная магнитная индукция Br — намагниченность, которой обладает магнитный материал при напряжённости внешнего магнитного поля, равной нулю, измеряется в Тесла.
  • Коэрцитивная магнитная сила Hc — определяет сопротивляемость магнита к размагничиванию, измеряется в Ампер/метр.
  • Магнитная энергия (BH)max -характеризует, насколько сильным является магнит.
  • Температурный коэффициент остаточной магнитной индукции Tc of Br – определяет зависимость магнитной индукции от температуры окружающего воздуха, измеряется в процентах на градус Цельсия.
  • Максимальная рабочая температура Tmax — определяет предел температуры, при которой магнит временно теряет свои магнитные свойства, измеряется в градусах Цельсия.
  • Температура Кюри Tcur — определяет предел температуры, при которой неодимовый магнит полностью размагничивается, измеряется в градусах Цельсия.

В состав неодимовых магнитов, кроме неодима входит железо и бор и зависимости от и их процентного соотношения, получаемое изделие, готовый магнит, различается по классам, отличающимся по своим характеристикам, приведенным выше. Всего выпускается 42 класса неодимовых магнитов.

Достоинствами неодимовых магнитов, определяющими их востребованность, являются:

  • Неодимовые магниты обладают наиболее высокими магнитными параметрами Br, Нсв, Hcм , ВН.
  • Подобные магниты имеют более низкую стоимость в сравнении с подобными металлами, имеющими в своем составе кобальт.
  • Обладают способностью работать без потерь магнитных характеристик в температурном диапазоне от – 60 до + 240 градусов Цельсия, с точкой Кюри +310 градусов.
  • Из данного материала возможно изготовить магниты из любой формы и размеров (цилиндры, диски, кольца, шары, стержни, кубы и др.).

Ветрогенератор на неодимовых магнитах мощностью 5,0 кВт

В настоящее время отечественные и зарубежные компании все более широко используют неодимовые магниты при изготовлении тихоходных генераторов электрического тока. Так ООО «Сальмабаш», г. Гатчина Ленинградской области, выпускает подобные генераторы на постоянных магнитах мощностью 3,0-5,0 кВт. Внешний вид данного устройства приведен ниже:

Корпус и крышки генератора изготавливаются из стали, в дальнейшим с покрытием лакокрасочными материалами. На корпусе предусмотрены специальные крепления, позволяющие закрепить электрический аппарат на несущей мачте. Внутренняя поверхность обработана защитным покрытием, предотвращающим коррозию металла.

Статор генератора набран из электротехнических пластин стали.

Обмотка статора — выполнена эмаль-проводом, позволяющим устройству работать продолжительное время с максимальной нагрузкой.

Ротор генератора имеет 18 полюсов и установлен в подшипниковых опорах. На ободе ротора размещены неодимовые магниты.

Генератор не требует принудительного охлаждения, которое осуществляется естественным путем.

Технические характеристики генератора мощностью 5,0 кВт:

  • Номинальная мощность – 5,0 кВт;
  • Номинальная частота – 140,0 оборотов/минуту;
  • Рабочий диапазон вращения – 50,0 – 200,0 оборотов/минуту;
  • Максимальная частота – 300,0 оборотов/минуту;
  • КПД – не ниже 94,0 %;
  • Охлаждение – воздушное;
  • Масса – 240,0 кг.

Генератор оснащен клеммной коробкой, посредством которой осуществляется его подключение к электрической сети. Класс защиты соответствует ГОСТ14254 и имеет степень IP 65 (пылезащищенное исполнение с защитой от струй воды).

Конструкция данного генератора приведена на рисунке, приведенном ниже:

где: 1-корпус, 2- крышка нижняя, 3- крышка верхняя, 4- ротор, 5- неодимовые магниты, 6- статор, 7- обмотка, 8- полумуфта, 9- уплотнения, 10,11,12- подшипники, 13- клеммная коробка.

Плюсы и минусы

К достоинствам ветрогенераторов, изготовленных с использование неодимовых магнитов можно отнести следующие характеристики:

  • Высокий КПД устройств, достигаемый за счет минимизации потерь на трение;
  • Продолжительные сроки эксплуатации;
  • Отсутствие шума и вибрации при работе;
  • Снижение затрат на установку и монтаж оборудования;
  • Автономность работы, позволяющая осуществлять эксплуатацию без постоянного обслуживания установки;
  • Возможность самостоятельного изготовления.

К недостаткам подобных устройств можно отнести:

  • Относительно высокая стоимость;
  • Хрупкость. При сильном внешнем воздействии (ударе), неодимовый магнит способен лишиться своих свойств;
  • Низкая коррозийная стойкость, требующая специального покрытия неодимовых магнитов;
  • Зависимость от температурного режима работы – при воздействии высоких температур, неодимовые магниты теряют свои свойства.

Как сделать своим руками

Ветровой генератор на основе неодимовых магнитов отличается от прочих конструкций генераторов тем, что легко может быть изготовлен самостоятельно в домашних условиях.

Как правило за основу берут автомобильную ступицу или шкивы от ременной передачи, которые предварительно очищаются, если это бывшие в употреблении запасные части и подготавливаются к работе.

При наличии возможности изготовить (выточить), специальные диски, лучше остановиться на этом варианте, т.к. в этом случае не придется подгонять геометрические размеры наматываем ых катушек к размерам используемых заготовок.

Неодимовые магниты следует приобрести, для чего можно воспользоваться сетью интернет или услугами специализированных организаций.

Один из вариантов изготовления генератора на неодимовых магнитах, с использованием дисков, специально изготовленных для этих целей, предлагает к рассмотрению Яловенко В.Г. (Украина). Данный генератор изготавливается в следующей последовательности:

  1. Из листовой стали вытачиваются два диска диаметром 170,0 мм с устройством центрального отверстия и шпоночного паза.
  2. Диск делится на 12 сегментов, для на его поверхности выполняется соответствующая разметка.
  3. В размеченные сегменты клеятся магниты, таким образом, чтобы их полярность чередовалась. Для избегания ошибок (по полярности), необходимо перед наклейкой, выполнить их маркировку.
  4. Подобным образом изготавливается и второй диск. В результате получается следующая конструкция:
  1. Поверхность исков заливается эпоксидной смолой.
  2. Из провода (эмаль-провода) марки ПЭТВ или аналога, сечением 0,95 мм2, наматывается 12 катушек по 55 витков в каждой.
  3. На листе фанеры или бумаге, изготавливается шаблон, соответствующий диаметру используемых дисков, на котором также производится разбивка на 12 секторов.

Катушки укладываются в размеченные сегменты, где фиксируются (изолента, скотч и т.д.) и расключаются последовательно между собой (конец первой катушки соединяется с началом второй и т.д.). в результате получается следующая конструкция

  1. Из дерева (доска и т.д.) или фанеры, изготавливается матрица, в которой можно залить эпоксидной смолой уложенные по шаблону катушки. Глубина матрицы должна соответствовать высоте катушек.
  2. Катушки укладываются в матрицу и заливаются эпоксидной смолой. В результате получается следующая заготовка:
  1. Из стальной трубы диаметром 63,0 мм изготавливается ступица с узлом крепления вала, изготавливаемого генератора. Вал монтируется на подшипники, устанавливаемые внутри ступицы.
  2. Из такой же трубы изготавливается поворотный механизм, обеспечивающий ориентацию генератора в соответствии с потоками ветра.
  3. На вал одеваются изготовленные запасные части. В результате получается следующая конструкция, плюс поворотный механизм:
  1. Конструкция должна жестко крепить статор (заготовка с обмотками, залитыми эпоксидной смолой), с одной стороны, и не затруднять вращение ротора (диски с недимовыми магнитами).
  2. Из трубы (полиэтилен, пропилеи и т.д.), используемой для прокладки сетей водопровода или канализации, изготавливаются лопасти ветрового генератора. Для этого труба нарезается нужной длины, после чего разрезается и заготовкам придается соответствующая форма.
  3. Изготавливается хвостовок ветровой установки. Для этого может быть использован любой листовой материал (фанера, металл, пластик), после чего хвостовик крепится к собираемой конструкции, со стороны противоположной креплению лопастей. В результате получается следующая конструкция:
    • Собранная установка монтируется в предусмотренном для этого месте.
    • К выводам генератора подключается нагрузка.

    Конструкция ветрового генератора на неодимовых магнитах может быть различной, все зависит от имеющихся запасных частей и технический возможностей человека, решившего изготовить подобное устройство самостоятельно.

Источник: https://alter220.ru/veter/vetrogenerator-na-neodimovyh-magnitah.html

Генератор, который работает на неодимовых магнитах. Как сделать своими руками

Ветрогенератор с генератором без магнитного залипания

Бесплатной электроэнергии не бывает, однако существует масса способов сделать её более дешёвой. Например, с помощью альтернативных источников энергии.

Они, возможно, не покроют все потребности конкретного дома или офиса, но спокойно смогут своей работой компенсировать львиную долю потребляемого электричества. Неодимовые магниты — одна из популярных основ для подобных генераторов.

Такой источник доступен для сборки собственными руками. В этой статье вы узнаете, как это сделать, с помощью опробованных схем, рекомендаций мастеров и видео.

Генератор на неодимовых магнитах: принцип и схема работы

Неодимовые магниты – элементы, которые позволяют конструировать альтернативные источники энергии. Неважно, какими они будут: ветряными, водными или механическими. Речь идёт не о мифологических вечных двигателях, а о целиком реальных устройствах с высоким КПД. В быту они, как минимум, помогут вам зарядить гаджеты или автомобильный аккумулятор.

Внимание! Все утверждения о «реально бесплатной» или «свободной» энергии и вечных двигателях на основе неодимовых магнитов – ложь, противоречащая законам физики. Для работы любого двигателя нужна энергия. Задача генераторов на основе этих элементов – уменьшить её потребление извне, при этом максимально увеличив производительность.

В таких устройствах за основу взят обычный маятник, а давать низкопотенциальную энергию будет сила тяжести. Схема работы такова:

  1. В верхней части маятник вольно качается на паре подшипников.
  2. Внизу на конце рычага маятника находится дугообразный отрезок с парой мощных неодимовых магнитов.
  3. На неподвижной опоре в верхних точках колебания маятника установлены два электромагнита, сопоставимые по мощности с неодимовыми. По мере приближения маятника они будут кратковременно включаться и отталкивать его.
  4. По качающейся дуге располагаются менее мощные неодимовые магниты. На них возложена функция ротора.
  5. На неподвижной платформе в нижнем сегменте окружности маятника размещены статорные катушки без сердечника (6-12 шт., в зависимости от размеров устройства). Их функция – сокращение торможения.
  6. Выше дуги можно расположить ещё одну, меньше по количеству магнитов, по размеру и мощности.
  7. Электромагниты следует запитать от маломощной батареи из электроконденсаторов.
  8. Чтобы преобразовать энергию в переменный ток, нужно установить инвертор.

Плюсы и минусы конструкции

Специалисты считают, что для обеспечения электричеством загородного дома достаточно маятника с осью длиною 6 м.

В таком случае электромагниты будут толкать неодимовые магниты на маятнике с силой более 100 кг. Плюсы такого устройства в том, что оно не зависит от ветра или солнца.

Кроме того, такой генератор не нуждается в дорогих аккумуляторах, как другие альтернативные генераторы энергии.

Однако при использовании не исключены проблемы:

  1. В момент движения маятника в обратную сторону может смениться полярность магнитов. Решается с помощью включения в цепь тиристоров и диодов.
  2. В момент зависания маятника в верхней точке может возникнуть эффект пульсации в сети. Решается так:
  • устанавливается конденсатор, который краткосрочно собирает энергию, препятствуя скачкам;
  • монтируется аккумулятор, который будет собирать энергию долгосрочно;

Генератор на неодимовых магнитах

  • конструируется ещё один генерирующий маятник, который будет работать асинхронно с первым (когда один – в верхней точке окружности, второй – в нижней).

Внимание! С ферритовыми магнитами этот проект реализовать не удастся из-за их технических характеристик.

Ветрогенератор на неодимовых магнитах своими руками: монтаж основы

В качестве основы для таких установок выступают автомобильная ступица плюс тормозные диски. Преимущество в том, что её просто достать (в т.ч. купить б/у) и не нужно основательно переделывать или дополнять:

  • разберите;
  • почистите от ржавчины (например, стальной щёткой, насаженной на дрель);
  • смажьте детали;
  • соберите;
  • покрасьте корпус и пользуйтесь.

Неодимовые магниты будут крепиться прямо на ступицу. Их потребуется около 20 штук: примерная высота 8 мм, диаметр 25 мм. Очень важно правильно, равномерно и точно расположить магниты – по кругу, с чередованием полюсов. Крепить их лучше на клей, который стоит предварительно испытать на прочность.

Совет. Народные конструкторы рекомендуют сначала расчертить ступицу или разложить магниты на бумажном макете, чтобы разместить их на равном расстоянии друг от друга.

После того как все магниты будут приклеены, залейте поверхность диска эпоксидной смолой. По контуру намотайте борт. Материал и способ может быть разным:

  • грубый картон;
  • гибкая пластмасса;
  • пластилин;
  • тонкая полоска шпона.

Для этого генератора лучше всего подходит трёхфазная модель. Она сложна в сборке, но имеет ощутимые преимущества:

  • не производит вибрацию, которая является бичом ветрогенераторов;
  • бесшумна;
  • осуществляет постоянную подачу тока;
  • генерирует стабильную мощность (фазы компенсируют друг друга).

Сборка и установка ветрогенератора

После завершения сборки ротора следует подготовить детали для неподвижной части конструкции – статора. Он состоит из катушек из медного провода. Его сечение должно быть большого диаметра, чтобы снизить сопротивление.

Как правило, намотку таких катушек осуществляют на глаз. Чтобы зарядить батарею в 12В при 120-150 оборотах в минуту, нужно около полутора тысяч витков (суммарно для всех катушек).

Наматывается провод на готовых частях будущей конструкции или самодельных макетах.

Статоры могут быть как круглые, так и прямоугольные. Всё зависит от параметров магнитов. Если форма прямоугольная, лучше, чтобы магнитное поле располагалось вдоль большей стороны. Толщина неподвижных элементов также должна соответствовать высоте магнитов. В таком случае вы получите наибольшую эффективность устройства.

Генератор собран – можно приступать к монтажу мачты и сборке винта. Для вышки главное, чтобы устройство на её вершине имело доступ к свободному потоку воздуха. Если она установлена среди застройки, высота должна минимум на 1 м превышать уровень близлежащих строений или деревьев. Для открытой площадки обычно достаточно 5 м. Также мачта должна соответствовать следующим критериям:

  • прочность;
  • удобство для монтажа и обслуживания генератора на высоте;
  • устойчивость, в т.ч. – к вибрации.

Винты для генератора лучше всего изготавливать крыльчатой формы – для максимального аэродинамического эффекта. Материал – ПВХ трубы диаметром от 4 мм или металл. Лопасти крепятся к двигателю с помощи металлической головки с приваренными пластинками по числу винтов. Оптимальное количество лопастей – от 3 до 6.

Внимание! Винты крепятся на расстоянии не меньше 25 см от генератора. Это мера безопасности. При сильном порыве они могут сломаться о корпус устройства.

Не стоит отчаиваться, если генератор в собранном виде не показал того результата, на который вы рассчитывали. Проверьте расчёты, доработайте и усовершенствуйте модель.

Источник: https://sandizain.ru/na-dache/generator-kotoryj-rabotaet-na-neodimovyx-magnitax.html

Самодельный ветряк с самодельным генератором на постоянных магнитах

Ветрогенератор с генератором без магнитного залипания
Уникальное открытие. Ерохин В.В. из Тореза нашёл продольную силу в магнетизме Подробнее

Бурлака Виктор Афанасьевич.

    Я сделал фотосессию моего маленького ветрячка или, как я называю, действующей модели. Так как я его построил неожиданно для себя, просто решил потренироваться и узнать что получится, то сначала ничего не фотографировал, не думал, что им могут заинтересоваться, фотосессия получилась в обратном порядке, т.е. дедукцией – от целого к частям.

   А теперь немного истории, и все по порядку:

    Построить ветряк – моя давнишняя мечта, но было много препятствий. То жил в городской квартире, а дачи не было. То переезды из одного города в другой, потом в третий. В Светловодске я живу последние 18 лет.

Здесь есть все условия – частный коттедж на две семьи, 5 соток огорода и столько же сада. С востока и юга открытая местность, с севера и запада рельеф выше моего. Ветры не балуют, т.е. не очень сильные.

Ну, думаю, здесь я построю ветряк для души.

    Но когда занялся вплотную, оказалось все не так просто. Литературы подходящей не нашел. Долго не мог определиться с генератором, не знал, как правильно изготовить лопасти, какой редуктор применить, как защитить от урагана и т.п. Как говорится, варился в собственном соку.

Но знал, что если очень хочется, то все получится. Неспеша делал мачту. На чермете подбирал подходящие куски труб, начиная с диаметра 325 мм по 1,5 м длиною (чтобы помещалась в багажнике моей машины). Взамен сдавал металлолом. Получилась мачта длиной 12м.

Для фундамента привез бракованный фундаментный блок от высоковольтной опоры. Закопал его на 2метра в землю и 1м остался над землей. Затем обварил его двумя поясами из уголка, к ним приварил кронштейны.

На концы кронштейнов к анкерным болтам приварил «пластинки» из 16мм железа размером 50 х 50 см, соединенных между собой мощными петлями. Купил на рынке мягкие 10 мм тросы и талрепы, все анодированное, не ржавеет. Сварил и закопал анкер под съемную лебедку.

Лебедку тоже пришлось делать самодельную, используя готовый червячный редуктор. Кроме того, установил П-образную подпорку высотой около 2м, на которую должна ложиться мачта. Так как спешить было некуда – мачта делалась без спешки и поэтому получилась, на мой взгляд, красивая и надежная.

    И тут Бог, видя мои труды, благословил меня выйти на форум http://forum.ixbt.com/topic.cgi?id=48:4219-74#1829. Я его весь перечитал, зарегистрировался, и стал набираться опыта.

Начал переделывать автогенератор, а когда перевел с английского «заморские» сайты (Хью Пигота и др.

) по построению торцевых генераторов без железа в катушках, очень захотелось попробовать и самому это сделать, хотя бы в миниатюре.

   Решил построить действующую уменьшенную модель, чтобы выдавала до 1 ампера на 12-вольтовый аккумулятор.

    Для изготовления ротора купил в Знаменке на предприятии «Акустика» http://www.akustika-ag.de/cgi-bin/p.cgi?a 24 шт. дисковых неодимовых магнита 20*5 мм.

Нашел ступицу от колеса мотоблока, токарь по моим чертежам выточил два стальных диска диаметром по 105мм и толщиной 5мм, распорную втулку толщиной 15мм и вал.

На диски наклеил и до половины залил эпоксидкой магниты по 12 шт на каждый, чередуя их полярность.

   Для изготовления статора намотал 12 катушек эмальпроволокой диаметром 0,5мм по 60 витков на катушку (взял проволоку с петли размагничивания старого негодного цветного кинескопа, там его достаточно). Распаял катушки последовательно конец с концом, начало с началом и т.д. Получилась одна фаза (боялся, что будет маловато напряжения). Выпилил из 4 мм фанеры форму, натер ее воском.

   Жаль, вся форма в сборе не сохранилась. На нижнее основание положил вощеную бумагу (спер в жены на кухне, она выпечку на ней делает), на нее наложил форму с круглячком в центре. Потом вырезал со стеклоткани два кружка.

Один постелил на вощеную бумагу нижнего основания формы. На него выложил распаянные между собой катушки. Выводы из многожильного изолированного провода проложил в выпиленные ножовкой неглубокие пазы. Залил все это эпоксидкой.

Подождал около часа, чтобы пузырьки воздуха все вышли, и эпоксидка разлилась равномерно по всей форме и пропитала катушки, долил, где надо, и накрыл вторым кружком стеклоткани. Сверху положил второй лист вощеной бумаги и прижал верхним основанием (куском ДСП).

Главное, чтобы оба основания были строго плоскими. Утром разъединил форму и извлек красивый прозрачный статор толщиной 4мм.

   Жаль, что для более мощного ветряка эпоксидка не годится, т.к. боится высокой температуры.

    В ступицу вставил 2 подшипника, в них вал со шпонкой, на вал первый диск ротора с наклеенными и залитыми до половины эпоксидкой магнитами, потом распорную втулку толщиной 15мм. Толщина статора с залитыми катушками 4мм, толщина магнитов 5мм, итого 5+4+5=14мм.

На дисках ротора оставлены бортики на краях по 0,5мм чтобы упирались магниты при центробежной силе (на всякий случай). Поэтому отнимем 1мм. Осталось 13мм. На зазоры остается по 1мм. Поэтому распорка 15мм.

Потом статор (прозрачный диск с катушками), который крепится к ступице тремя медными 5 мм болтами, их видно на фото. После ставится второй диск ротора, который упирается в распорную втулку. Нужно остерегаться, чтобы палец не попал под магниты – очень больно защемляют.

(Противоположные магниты на дисках должны иметь разную полярность, т.е. притягиваться.)

   Зазоры между магнитами и статором регулируются медными гайками, размещенными на медных болтах по обе стороны ступицы.

    На оставшуюся выступающую часть вала со шпонкой одевается пропеллер, который через шайбу (а если нужно то и втулку) и гровер прижимается гайкой к ротору. Гайку желательно закрыть обтекателем (я его так и не сделал).

   Зато сделал крышу-козырек над ротором и статором, распилив алюминиевую кастрюльку так, чтобы захватить часть донышка и часть боковой стенки.

   Пропеллер изготовил из метрового куска дюралевой поливной трубы диаметром 220 мм с толщиной стенки 2,5мм.

   Просто на ней нарисовал двухлопастный пропеллер и выпилил электролобзиком. (Из этого же куска я еще выпилил три лопасти длиной по 1м для ветряка на автогенераторе, и еще как видите осталось). Переднюю кромку лопастей я заокруглил “на глаз” радиусом, равным половине толщины дюрали, а зднюю заострил с фаской приблизительно 1см на концах и до 3см к центру.

    В центре пропеллера сначала просверлил отверстие 1мм сверлом для балансировки. Балансировать можно прямо на сверле, положив дрель на стол, или подвесить на нить к потолку. Балансировать нужно очень тщательно. Я отдельно балансировал диски ротора и отдельно пропеллер. Ведь обороты доходят до 1500 об/мин.

    Так как магнитное залипание отсутствует, пропеллер весело вращается от малейшего ветерка, которого на земле даже не ощущаешь.

При рабочем ветре развивает высокие обороты, у меня амперметр на 2А прямого включения, так он часто зашкаливает на 12 вольтовый старый автомобильный аккумулятор.

Правда при этом начинает складываться и подниматься вверх хвост, т.е. срабатывает автоматическая защита от сильного ветра и чрезмерных оборотов.

    Защита выполнена на основе наклонной оси вращения хвоста.

    Отклонение оси составляет 18-20 градусов от вертикали. Извиняюсь за чертеж, я его пытался срисовать с заморского сайта http://www.otherpower.com/otherpower_wind.html

    Отработал этот ветрячок у меня 3 месяца. Снял, разобрал – подшипники в порядке, статор тоже цел. Немного приржавели магниты в тех местах, где не попала краска. Кабель идет напрямую без токосъемника. Он у меня есть сделанный, но я передумал его ставить.

Когда демонтировал малый ветрячек – он небыл перекручен. Так что я убедился – он не нужен, только лишние хлопоты. Выдавал он до 30 ватт мощности. Шум от пропеллера при закрытых окнах не слышен.

А при открытых не сильно слышно, если здоровый сон, то не разбудит, тем более на фоне шумов самого ветра.

    Есть желание сделать большой по такой же схеме, правда статор нужно делать по-другому, не на эпоксидке. Над этим сейчас думаю. А пока за эти три месяца соорудил ветряк на автогенераторе трехлопастной диаметром 2,2м, мощностью около 400 ватт. О нем в следующей статье.

25 июня 2006 г.

Источник: http://www.rosinmn.ru/SAM_burlaka.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.