Простой высоковольтный преобразователь

Содержание

Cхема высоковольтного преобразователя напряжения

Простой высоковольтный преобразователь

Всем привет. Целью этого проекта было создание генератора высокого напряжения, а по совместительству индукционного нагревателя значительной мощности, причём использоваться должна была очень простая схема и легкодоступные компоненты. Многие новички ищут способ эффективного увеличения мощности обычных двухтранзисторных ZVS и эта публикация в этом поможет.

Инвертор от Mazzilli, известный как «ZVS», пользуется популярностью среди любителей HV благодаря своей простоте и эффективности. Схема, которую здесь представляем, — ее модификация, чтобы передавать больше мощности.

Что касается теоретического описания работы инвертора, ему уже посвятили в интернете довольно много статей, которые всесторонне объясняют как теорию, так и практику.

Схема принципиальная ZVS преобразователя

Схема высоковольтного преобразователя на импульсных трансформаторах

Как видите, для удобства всё было разделено на два модуля. Такой подход позволяет легко подключать различные трансформаторы вместе с оптимально подобранными резонансными емкостями.

  1. Первый модуль — это драйвер с источником питания. Он имеет правильную электронику инвертора, а также встроенный выпрямитель и фильтр, который позволяет напрямую подключать устройство к сетевому трансформатору. Здесь использованы транзисторы IRFP260 и массивные дроссели с высоким током насыщения, что гарантирует надежную работу инвертора даже с высокой мощностью. Большой электролитический конденсатор видимый на фото, используется для фильтрации источника питания, он на 10000 мкФ 250 В. Это кажется нелогичным, но выбрали его из-за очень низких ЭПС и больших номинальных токов, что весьма важно в таких системах.
  2. Второй модуль состоит из двух параллельно подключенных строчников с резонансной батареей конденсаторов. Обе обмотки имеют по 8 витков, а резонансная батарея состоит из нескольких конденсаторов общей емкостью около 2,4 мкФ. Это позволило уменьшить импеданс резонансной цепи за счет увеличения количества мощности до уровня, на котором основным ограничением была текущая эффективность подачи всего сетевого трансформатора. Оба трансформатора (ТВС) практически идентичны, что очень важно — требуется даже распределение нагрузки, иначе инвертор может выйти из нормальной генерации, что приводит к сжиганию транзисторов.

Обмотка образована скручиванием 16 эмалевых проводов 0.4 мм, а затем обертыванием всего изоляционной лентой для механической защиты.

Это значительно уменьшает скин-эффект и связанные с ним потери — ранее использовались обмотки, выполненные из обычных толстых проводов, под нагрузкой они нагреваются до температуры, при которой изоляция начала дымить. Эти же лишь немного теплые, даже после долгой работы схемы.

Испытания преобразователя в действии

Инвертор способен выдерживать 10 минут непрерывной работы, после чего трансформаторы начинают требовать охлаждения. Транзисторы не нагреваются слишком сильно — радиаторы остаются почти холодными. Большая часть тепла выделяется на выпрямителе моста, который может неплохо нагреваться — на нем тоже большой радиатор.

Полезное:  Самодельный аудио усилитель класса D

Инвертор способен выдавать большие разряды благодаря значительной эффективности тока. Максимальная длина растянутой молнии составляет чуть более 20 см.

Также покажем сигналы осциллограмм: Первый это синусоида на LC-схеме без зажженной дуги. Последний скриншот показывает последовательность импульсов на одном из полевых ключей.

Индукционный нагреватель железа

Эта схема, как и любой такой резонансный преобразователь, может использоваться как небольшой индукционный нагреватель металлов. Чтобы сделать это, просто соберите индуктор в виде небольшой катушки, соединенный параллельно с резонансной батареей конденсаторов емкостью 2-4 мкФ. Вот как выглядит нагрев металла:

О транзисторах для генератора

IRFP260 — типичный выбор для этого типа инвертора. Данная схема питается от 27 В переменного тока, что означает около 36 В постоянного тока после выпрямления и фильтрации. Их применение гарантирует стабильную работу до 50 В постоянного тока, вы конечно можете повышать вольтаж еще дальше, но это рискованно.

Что касается транзисторов IRF740, они подходят только для меньших мощностей из-за небольших Id и больших Rds, что подразумевает меньшую силу тока и намного более высокие потери.

IRFP260 имеет значительно меньшие Rds и большую предельную мощность рассеивания тепла, поэтому он обеспечивает большую текущую долговечность и меньшие потери проводимости. Их можно купить в большинстве интернет-магазинов или на Али по 6$ за 10 шт.

 Можно использовать и IRP240, но вы сможете прокачать через него гораздо меньшие токи.

Использование транзисторов под более высокое напряжение не является особенно целесообразным, так как они имеют более высокие Rds (сопротивление перехода), что приводит к увеличению потерь и в районе 60 … 70 В постоянного тока транзисторная управляющая связь не срабатывает, вызывая уничтожение транзисторов пробоем. Поэтому предлагаем остаться на более низких напряжениях питания — до 50 В постоянного тока. Вместо дальнейшего увеличения напряжения лучше уменьшить импеданс резонансного контура, чтобы инвертор мог потреблять больше энергии без увеличения напряжения.

Удалось запустить преобразователь используя источник питания 12 В / 200 Вт — разряды были эффективными, но не настолько впечатляющие. Искра была около 10 см, толстая и пушистая.

В целом питание обеспечивается группой трансформаторов, выдающих 27 В переменного тока. Потребление тока на максимальной растянутой высоковольтной дуге достигает 30 А.

25,00 Загрузка…

НАЖМИТЕ ТУТ И ОТКРОЙТЕ

Источник: https://2shemi.ru/chema-vysokovoltnogo-preobrazovatelya-napryazheniya/

Пробуем сделать преобразователь напряжения самостоятельно

Простой высоковольтный преобразователь

Первой и основной целью моей работы было сделать повышающий преобразователь напряжения с 12 на 220 вольт. То есть, усложнять себе задачу я не собирался, поэтому предлагаемый мной вариант сборки имеет одно неоспоримое достоинство: он крайне прост.

Рис.1: Импульсный преобразователь напряжения.

Прибор строится по двухтактной схеме. Для воплощения данной схемы мне понадобилось только два полевых транзистора без задающих генераторов. По этой причине, даже при отсутствии соответствующего опыта, вам не составит труда собрать преобразователь напряжения своими руками.

К тому же, все необходимые для этого элементы всегда есть под рукой у любого радиолюбителя. Если говорить о выходной частоте, предлагаемого мной устройства, то она, к сожалению, является переменной.

Но это очень просто можно поправить, если на выходе установить диодный выпрямитель и конденсатор, с расчётной ёмкостью на 100 мкФ при напряжении 400 Вольт.

Хотя, если ёмкость будет слегка меньше, никакими проблемами это вам не грозит.

Тот преобразователь напряжения, который собирал я, можно, пожалуй, отнести к категории резонансных, поскольку рабочая частота зависит от колебательного (LC) контура.

А в качестве катушки используется первичная обмотка трансформатора, параллельно которой установлен конденсатор небольшой ёмкости на 2,2 мкФ (400 Вольт).

Но в любом случае, даже при самом плохом стечении обстоятельств вы сможете настроить ваш прибор на необходимую частоту экспериментальным путём. Кроме того, частоту преобразователя напряжения можно отрегулировать затворными ограничительными резисторами.

В качестве силовых ключей использовал довольно мощные канальные полевые транзисторы высоковольтного типа (примерно 200 Вольт). Но вы, в случае со своим собственным устройством, вполне можете заменить их на низковольтные.

Не забывайте, что мощность конечно же, в первую очередь определяется трансформатором и полевыми транзисторами. Точно могу сказать, что по выполненной мной схеме можно получать до 0,5 кВт выходной мощности. По-моему, неплохо, если собираешь простенький преобразователь напряжения своими руками.

На самом деле, я при сборке данной схемы был далеко не оригинален, подобные преобразователи  и схемы к ним встречаются везде и  их трудно не заметить, и не опробовать.

К самой плате генератора помимо транзистора подсоединяются также стабилитроны, которые стабилизируют затворное напряжение. Для этой цели подходят элементы мощностью 0,5 ватт, 1 ватт, 1,3 ватт.

 Они не имеют склонности перегреваться, хотя конечно будет лучше, если вы возьмёте более мощные экземпляры. Напряжение стабилизации у стабилитрона должно быт от 10 вольт до 15 вольт.

Сам я воспользовался стабилитронами на 15 вольт.

Конкретные параметры данного элемента нет необходимости учитывать. По сути, и сами эти элементы можно просто изъять из схемы преобразователя напряжения. Конечно, цепь будет работать не так хорошо, как если бы все составляющие были на месте, но всё же функционировать она от этого не перестанет.

Существуют затворные ограничители на 470 Ом, я брал на 390 Ом, и здесь возможны отклонения от 100 до 470 Ом. Также мною были применены диоды ультрабыстрого типа. Подойдут сюда также и просто быстродействующие диоды с током минимум в 1А 9при желании можно использовать и более мощные экземпляры.

Если использовать один общий теплоотвод для транзисторов, обязательно нужно изолировать их специальными слюдяными прокладками и изолирующими шайбами.

Я сделал два раздельных теплоотвода для транзисторов преобразователя напряжения, поэтому они не будут сильно нагреваться даже к тех случаях, когда задействована максимальная мощность. Возможен небольшой перегрев входного дросселя, поэтому его необходимо будет обмотать проводом диаметром до двух миллиметров.

Брал дроссель от компьютерных блоков питания на порошковом железе. Количество витков на дросселе не принципиально, определяется по своему усмотрению (примерно от 7 до 15).

Чтобы получить 220 Вольт, я применил уже готовый трансформатор. Первичная обмотка (когда она делается без отвода) состоит из восьми витков толстого провода (8мм или больше) в 3-4 шины.

Если говорить конкретно про напряжение в 500 ватт, то первичная обмотка содержит 7-8 витков по 10 жил провода на 0,7 мм. Вторичная обмотка составляет всего 48 витков провода с диаметром в 1 мм. Можно мотать и более тонкими проводами, например 2 жилы по 0,5 мм. Возможно, что так вам будет удобнее.

Используемая мной схема хороша тем, что в неё можно включить уже готовые трансформаторы и применять их в уже готовом блоке питания. При этом нет необходимости что-то перематывать. Сетевая обмотка, которая в компьютерном блоке являлась первичной, в вашем устройстве станет уже вторичной.

Пара выводов на 12 Вольт должна быть подключена к силовым выводам транзистора. Проверку на рабочесть я проводил с помощью лампы на 100 Ватт. По результатам этой проверки стало очевидно, что цепь совершенно не перегружена.

Конечно, для использования такого инвертора в реальной жизни потребуется обеспечить выпрямление тока. С этой целью можно применить такие же диоды, как и те, что использовались на плате.

А далее, получившееся устройство можно спокойно использовать для зарядки телевизора, ноутбука, телефона. Но не стоить соединять инверторы к приборам с сетевым трансформатором или электродвигателем, это ни к чему хорошему не приведёт.

Вычисление количества витков первичной и вторичной обмотки

Для расчёта вторичной обмотки при сборке преобразователя напряжения своими руками потребуется:

  • Выявить, сколько вольт даёт каждый дополнительный виток (для этого питающее напряжение следует поделить на количество витков первичной обмотки);
  • Нужное значение напряжение поделить на показатель виток/вольт, если получившееся число оказалось дробным (и дробная часть при этом не менее половины единицы), то округлить его в сторону большего значения.

Для расчёта первичной обмотки потребуется:

  • Вычислить максимальный потребляемый ток первичной обмотки: Pmax/12=Imax, где Pmax – максимально потребляемая мощность;
  • Ориентируясь на силу и плотность (ампер на мм2) тока вычислить необходимую площадь или подходящее сечение провода.

Поскольку движение тока происходит не по всему проводу, а только по его поверхности, то скорее всего придётся заменить один толстый провод на несколько тонких. К тому же это позволит снизить степень нагревания.

Трансформатор

Когда уже вычислено необходимое количество витков для первичной обмотки, можно взяться за намотку трансформатора.

Для этого нужно взять все провода холостого хода, скрутить в косичку и начать делать обмотку.  То же самое нужно проделать со второй частью первичной обмотки.

Принципиально, чтобы распределение витков от обеих обмоток было равномерным.

В противном случае может произойти, перегрев трансформатора, особенно в том случае, если мощность будет максимальной или близкой к таковой, а уровень напряжения вторичной обмотки будет проседать всё с большей силой.

Дроссель

Дросселя для преобразователя напряжения наиболее удобно мотать с помощью жёлтых колец, которые можно изъять из компьютерного блока питания.

Изначально они изготавливаются на 5-6 витков, но согласно практике, лучше всего, если мотается по 2-3 витка на вольт. К сожалению, из-за подобной модернизации дроссель становится весьма громоздким.

Желательно, чтобы используемый для обмотки дросселя провод в сечении был не менее 2 мм, в противном случае вся мощность уйдёт в никуда.

Источник: https://elektronchic.ru/domashnij-elektrik/preobrazovatel-napryazheniya-svoimi-rukami.html

Все виды преобразователей напряжения

Простой высоковольтный преобразователь

Преобразователи напряжения широко используются как в быту, так и на производстве.

Для производства и промышленности чаще всего изготавливаются по индивидуальному заказу, ведь там нужен мощный преобразователь и не всегда с напряжением стандартной величины.

Стандартные величины выходных и входных параметров применяются зачастую в бытовых условиях. То есть преобразователь напряжения — это электронное устройство, которое предназначено для изменения вида электроэнергии, её величины или же частоты.

По своей функциональности они делятся на:

  1. Понижающие;
  2. Повышающие;
  3. Бестрансформаторные;
  4. Инверторные;
  5. Регулируемые с настройкой частоты и величины выходного переменного напряжения;
  6. Регулируемые с настройкой величины постоянного выходного напряжения.

Некоторые из них могут выполняться в специальном герметичном исполнении, такие типы устройств используются для влажных помещений, или же, вообще, для установки под водой.

Итак, что же из себя представляет каждый вид.

Высоковольтный преобразователь напряжения

Такое электронное устройство, которое предназначено для получения переменного или постоянного высокого напряжения (до нескольких тысяч вольт).

Например, такие устройства применяются для получения высоковольтной энергии на кинескопы телевизоров, а также для лабораторных исследований и проверки электрооборудования напряжением, повышенным в несколько раз.

Кабеля или же силовые цепи масляных выключателей, рассчитанных на напряжение 6 кВ, испытывают напряжением 30 кВ и выше, правда, такая величина напряжения не обладает высокой мощностью, и при пробое сразу же отключается.

Эти преобразователи довольно компактны ведь их приходится переносить персоналу от одной подстанции к другой, чаще всего вручную. Нужно заметить, что все лабораторные блоки питания и преобразователи обладаю почти эталонным, точным напряжением.

Более простые высоковольтные преобразователи применяются для запуска люминесцентных ламп. Сильно повысить импульс до нужного можно за счёт стартера и дросселя, которые могут иметь электронную или же электромеханическую основу.

Промышленные установки, выполняющие преобразование более низкого напряжения в высокое, имеют множество защит и выполняются на повышающих трансформаторах (ПТН). Вот одна из таких схем дающая на выходе от 8 до 16 тысяч Вольт, при этом для его работы необходимо всего около 50 В.

Из-за того, что в обмотках трансформаторов вырабатывается и протекает довольно высокое напряжение, то и к изоляции этих обмоток, а также к её качеству предъявляются высокие требования.

Для того чтобы устранить возможность появления коронирующих разрядов, детали высоковольтного выпрямителя должны быть припаяны к плате аккуратно, без заусенцев и острых углов, после чего залиты с обеих сторон эпоксидной смолой или слоем парафина толщиной 2…3 мм, обеспечивающим изоляцию друг от друга. Иногда данные электронные системы и устройства называют повышающий преобразователь напряжения.

Следующая схема представляет собой линейный резонансный преобразователь напряжения, который работает в режиме повышения. Он основан на разделении функций повышения U и его чёткой стабилизации в абсолютно разных каскадах.

При этом некоторые инверторные блоки можно заставить работать с минимальными потерями на силовых ключах, а также на выпрямленном мосте, где появляется высоковольтное напряжение.

Преобразователь напряжения для дома

Преобразователи напряжения импульсные

С преобразователями напряжения для дома обычный человек сталкивается очень часто, ведь во многих устройствах есть блок питания. Чаще всего это понижающие преобразователи, имеющие гальваническую развязку.

Например, зарядные устройства мобильных телефонов и ноутбуков, персональные стационарные компьютеры, радиоприёмники, стереосистемы, различные медиапроигрыватели и этот перечень можно продолжать очень долго, так как их разнообразие и применения в быту в последнее время очень широко.

Бесперебойные блоки питания оснащены накопителями энергии в виде аккумуляторов. Такие устройства применяются также для поддержания работоспособности системы отопления, во время неожиданного отключения электроэнергии.

Иногда преобразователи для дома могут быть выполнены по инверторной схеме, то есть подключив его к источнику постоянного тока (аккумулятору), работающего за счёт химической реакции можно получить на выходе обычное переменное напряжение, величина которого будет 220 Вольт.

Особенностью данных схем является возможность получить на выходе чистый синусоидальный сигнал.

Одной из очень важных характеристик, применяемых в быту преобразователей, является стабильная величины сигнала на выходе устройства, независимо от того сколько вольт подаётся на его вход.

Эта функциональная особенность блоков питания связана с тем, что для стабильной и продолжительной работы микросхем и других полупроводниковых устройств необходимо чётко нормированное напряжение, да ещё и без пульсаций.

Основными критериями выбора преобразователя для дома или квартиры являются:

  1. Мощность;
  2. Величина входного и выходного напряжения;
  3. Возможность стабилизации и её пределы;
  4. Величина тока на нагрузке;
  5. Минимизация нагрева, то есть лучше чтобы преобразователь работал в режиме с запасом по мощности;
  6. Вентиляция устройства, может быть естественная или принудительная;
  7. Хорошая шумоизоляция;
  8. Наличие защит от перегрузок и перегрева.

Выбор преобразователя напряжения дело не простое, ведь от правильно выбранного преобразователя зависит и работа питаемого устройства.

Бестрансформаторные преобразователи напряжения

Особенности преобразователя напряжения с 12В в 220 В

В последнее время они стали очень популярны, так как на их изготовление, а в частности, производство трансформаторов, нужно тратить немалые средства, ведь обмотка их выполняется из цветного металла, цена на который постоянно растёт. Основное преимущество таких преобразователей это, конечно же, цена.

Среди отрицательных сторон есть одно существенно отличающее его от трансформаторных блоков питания и преобразователей. В результате пробоя одного или нескольких полупроводниковых приборов, вся выходная энергия может попасть на клеммы потребителя, а это обязательно выведет его из строя. Вот простейший преобразователь переменного напряжения в постоянное.

Роль регулирующего элемента играет тиристор.

Проще обстоят дела с преобразователями, в которых отсутствуют трансформаторы, но работающие на основе и в режиме повышающего напряжение аппарата. Здесь даже при выходе одного элемента или нескольких на нагрузке не появится опасной губительной энергии.

Преобразователи постоянного напряжения

Преобразователь переменного напряжения в постоянное является самым часто используемым видом устройства этого типа. В быту это всевозможные блоки питания, а на производстве и в промышленности это питающие устройства:

  • Всех полупроводниковых схем;
  • Обмоток возбуждения синхронных двигателей и двигателей постоянного тока;
  • Катушек соленоидов масляных выключателей;
  • Оперативных цепей и цепей отключения там, где катушки требуют постоянного тока.

Тиристорный преобразователь напряжения — это наиболее часто применяемый для этих целей аппарат.

Особенностью этих устройств является полное, а не частичное, преобразование переменного напряжения в постоянное без всякого рода пульсаций.

Мощный преобразователь напряжения такого типа обязательно должен включать в себя радиаторы и вентиляторы для охлаждения, так как все электронные детали могут работать долго и безаварийно, только при рабочих температурах.

Регулируемый преобразователь напряжения

Эти устройства направлены на работу как в режиме повышения напряжения, так и в режиме понижения. Чаще всего это всё-таки аппараты, выполняющие плавную регулировку величины выходного сигнала, который ниже входного.

То есть на вход подаётся 220 Вольт, а на выходе получаем регулируемую постоянную величину, допустим, от 2 до 30 вольт. Такие приборы с очень тонкой регулировкой применяются для проверки стрелочных и цифровых приборов в лабораториях.

Очень удобно когда они оснащены цифровым индикатором. Нужно признать, что каждый радиолюбитель брал за основу своих первых работ именно этот вид, так как питание для определённой аппаратуры может быть разное по величине, а этот источник питания получался весьма универсальным.

Как сделать качественный и работающий долгое время преобразователь, вот основная проблема юных радиолюбителей.

Инверторный преобразователь напряжения

Данный тип преобразователей положен в основу инновационных компактных сварочных устройств. Получая для питания переменное напряжение 220 Вольт аппарат выпрямляет его, после чего снова делает его переменным, но уже с частотой несколько десятков тысяч Гц. Это даёт возможность значительно снизить габариты сварочного трансформатора, установленного на выходе.

Также инверторный способ применяется для питания отопительных котлов от аккумуляторных батарей в случае неожиданного отключения электроэнергии.

За счёт этого система продолжает работать и получает 220 вольт переменного напряжения из 12 Вольт постоянного.

Мощный повышающий аппарат такого назначения должен эксплуатироваться от батареи большой ёмкости, от этого зависит как долго он будет снабжать котёл электроэнергией. То есть емкость при этом играет ключевую роль.

Высокочастотный преобразователь напряжения

За счёт применения повышающих преобразователей появляется возможность уменьшения габаритов всех электронных и электромагнитных элементов, из которых состоят схемы, а это значит снижается и стоимость трансформаторов, катушек, конденсаторов и т. д.

Правда, это может вызывать высокочастотные радиопомехи, которые влияют на работу других электронных систем, да и обычных радиоприёмников, поэтому нужно надёжно экранировать их корпуса.

Расчет преобразователя и его помех должен производиться высококвалифицированным персоналом.

Что такое преобразователь сопротивления в напряжение?
Это особый вид, который используется только при производстве и изготовлении измерительных приборов, в частности, омметров. Ведь основа омметра, то есть прибора измеряющего сопротивление, выполнена в измерении падения U и преобразовании его в стрелочные или цифровые показатели.

Обычно измерения производятся относительно постоянного тока. Измерительный преобразователь — техническое средство, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации, а также передачи.

Он входит в состав какого-либо измерительного прибора.

Преобразователь тока в напряжение

В большинстве случаев все электронные схемы нужны для обработки сигналов, представленных в виде напряжения. Однако иногда приходится иметь дело с сигналом в виде тока. Такие сигналы возникают, например, на выходе фоторезистора или фотодиода.

Тогда желательно при первой же возможности преобразовать токовый сигнал в напряжение. Преобразователи напряжения в ток применяются в случае, когда ток в нагрузке должен быть пропорционален входному U и не зависеть от R нагрузки.

В частности, при постоянном входном U ток в нагрузке также будет постоянным, поэтому такие преобразователи иногда условно называют стабилизаторами тока.

Ремонт преобразователя напряжения

Ремонт этих устройств для преобразования одного вида напряжения в другой, лучше производить в сервисных центрах, где персонал имеет высокую квалификацию и впоследствии предоставит гарантии выполненных работ.

Чаще всего любые современные качественные преобразователи состоят из нескольких сотен электронных деталей и если нет явных сгоревших элементов, то найти поломку и устранить её будет очень сложно.

Некоторые же китайские недорогие устройства данного типа, вообще, в принципе лишены возможности их ремонта, чего нельзя сказать об отечественных производителях. Да может они немного громоздкие и не компактные, но зато подлежат ремонту, так как многие из их деталей можно заменить на аналогичные.

Источник: https://amperof.ru/elektropribory/ispolzovanie-preobrazovateley-naprazeniya.html

Преобразователи для газоразрядных индикаторов

Простой высоковольтный преобразователь

Преобразователи для газоразрядных индикаторов используются для «поджига» самих индикаторов. В этой статье мы как раз с вами и поговорим, как же их собрать простому рядовому электронщику.

Принцип работы преобразователя

Лучше всего начать объяснение с самых примитивных принципов работы данных преобразователей. Обратимся к примеру, далекому от электроники. Представим себе качели.

Дочка сидит на качелях, а мама начинает раскачивать, прикладывая к качелям некоторое усилие. Каждый, кто качал другого, знает, что надо приложить небольшое усилие в определенный момент.

Если все идет как по маслу, то через некоторое время качели, с достаточно большой массой на борту, приобретают внушительный размах и большую скорость.

Можно увидеть, что приложив небольшое усилие, мы разогнали серьезную массу до весьма сильных и опасных скоростей.

Ах да, к чему мы все это? Почти так же работают и высоковольтные преобразователи. Давайте рассмотрим их более подробно. Для начала рассмотрим примитивную схему:

В качестве качелей и массы у нас будет выступать дроссель (разновидность катушки индуктивности). На вход схемы идет постоянное напряжение.  На схеме катушка L и ключ S. Как только мы замыкаем ключ, тем самым мы прикладываем усилие к нашим качелям, отпускаем ключ, получаем возвратное движение.

Теперь, если постоянно включать и выключать ключ, будем получать все возрастающие импульсы повышенного напряжения на выходе.

Здесь работает такой принцип: в результате исчезновения магнитного поля в катушке индуктивности возникает ЭДС самоиндукции, которая, как известно, превышает напряжение, которое подается на саму катушку.

Однако электрический ток не качели.  Если энергию не сохранить — она будет потеряна. В результате возникают две задачи:

  1. Энергию надо поймать
  2. Не пустить ее назад в катушку

Решается все достаточно просто. Копить энергию может конденсатор, плавно освобождая ее по мере необходимости. Не пустит назад ток такой элемент, как диод. Исправим схему в соответствии написанному:

Если вовремя щелкать ключом, то у нас напряжение на выходе Uвых будет больше, чем напряжение на входе Uвх.  То есть Uвых >Uвх .

Более подробно про этот принцип можно прочитать на сайте Easyelectronics здесь.

Микросхема MC34063 в помощь

Однако, мы не можем в готовой схеме сидеть и постоянно замыкать и размыкать ключ.  Кто-то должен делать это за нас. Вот для этой цели и существуют специализированные микросхемы, которые за нас будут постоянно включать и выключать ключ. Одна из таких микросхем MC34063. На данном фото она представлена в корпусе SOIC

На ее примере и рассмотрим работу повышающего преобразователя.

MC34063 это специализированная микросхема, позволяющая повышать, понижать и инвертировать напряжение. Мы рассмотрим самую простую схему преобразователя, которую будем использовать в часах. Это, так называемая схема без драйвера полевого транзистора. Для увеличения кликните по самой схеме.

Минус этой схемы в том, что полевой транзистор будет нагреваться, плюс – отсутствие лишних деталей. Изучив более подробно эту схему, можно собрать что-то более мощное уже самостоятельно.

Можно  увидеть, что в данной схеме есть дроссель и микросхема 34063. Так же мы можем заметить, что дроссель сидит на полевом транзисторе. Сделано это с целью повышения мощности. Затвор полевого транзистора сидит на выходе тактовой частоты микросхемы. Элементы R10, R11 и RP1  — это обратная связь, благодаря которой микросхема знает, какое напряжение ей нужно выдавать.

C6 — это накопитель энергии. Чем больше ёмкость конденсатора, тем меньше пульсаций на выходе. Назначение диода очевидно. C9 — конденсатор, который задает частоту работы преобразователя, то есть скорость, с которой будет включаться и выключаться ключ. Преобразователь рассчитан на входное напряжение 12 Вольт. Напряжение на выходе зависит от подстроечного резистора RP1.

Сборка преобразователя

Запаяем частото-задающий конденсатор

Полевой транзистор будет усиливать ток. Если его не ставить, микросхема будет сильно нагреваться. Для больших токов полевой транзистор обязателен

А здесь уже запаяли диод, который не дает накопителю (конденсатору) разряжаться в обратную сторону

А вот и наши качели (дроссель), которые мы будем дергать туда-сюда с помощью микросхемы с определенной частотой, которая задана конденсатором

Вот, так называемый, полудрайвер полевого транзистора. Более подробно можно узнать из даташитов. На больших токах так же помогает полевому транзистору не нагреваться как утюг. В нашей схеме в статье его нет, но в ответственных схемах я предпочитаю его ставить

А тут мы установили саму микросхему и обратную связь

Накопительный конденсатор собственной персоной

А тут добавили фильтрующие конденсаторы на вход. Конденсаторов в цепях питания много не бывает

В обратную связь добавлен подстроечный резистор для регулировки напряжения. Так же виден электролитический конденсатор по питанию на входе

Ну а теперь самое интересное… Так как наш преобразователь рассчитан на входное напряжение 12 Вольт, то мы и подаем 12 Вольт с копейками;-)

Прошу прощения за творческий ужасающий бардак…  Смотрим что на выходе

И у нас 143 Вольта… из каких-то 12 Вольт. Вот это да! Но… имейте ввиду фанаты free energy, мощность на выходе от этого не меняется. Скорее всего даже будет меньше, так как КПД схемы точно уж меньше единицы.

Если вспомнить формулу, мощность равняется произведению силы тока на напряжение: P=IU. Поэтому увеличивая напряжение, мы во столько же раз уменьшаем максимальную силу тока, которую можно выдать в нагрузку.

При желании, напряжение на выходе схемы можно уменьшить или увеличить поворотом подстроечного резистора. Теперь от данного преобразователя можно запитать до 8 ламп (больше я не пробовал).

Ну что ж, поздравим меня, у нас получился повышающий преобразователь 😉 Будьте внимательны, так как на накопительном конденсаторе у нас высокое напряжение! Хоть и не убьет, но тряханет так, что настроение на весь день точно будет испорчено)).

Заключение

Если у вас нет времени, умения и желания на сборку часов на газоразрядных индикаторах, то вы всегда можете сделать на них предзаказ по вашим параметрам. Никакие часы на светодиодных индикаторах не сравнятся по теплому, согревающему свечению газоразрядных индикаторов.

Также мной уже разработаны образцы термометра, которые показывают температуру дома и на улице

Моя страничка в ВК El Kotto,  а также моя группа по газоразрядным лампам Nixie Tube.

Источник: https://www.ruselectronic.com/chasy-na-gazorazryadnikakh-vysokovoltnye-preobrazovateli-dlya-lamp/

Высоковольтный преобразователь. Принцип работы частотника

Простой высоковольтный преобразователь

Настоящие технологии по автоматизированию техпроцессов основываются на применении регулируемых приводов двигателей. Возрастает интерес к высоковольтным преобразователям частоты для регулирования больших высоковольтных двигателей. Они имеют применение в широком спектре производств промышленности.

Привод с регулированием частоты высоковольтных двигателей обуславливает требования режимов эксплуатации механизмов техпроцессов, не допускающих чрезмерное потребление электрической энергии линии питания. Уменьшаются потери в моторе при уменьшении нагрузки во время процесса.

Высоковольтный частотный преобразователь Rockwell Automation

Квалифицированные специалисты нашей страны накопили необходимый опыт по внедрению в эксплуатацию высоковольтных частотных преобразователей из Америки Rockwell Automation.

Оборудование и механизмы (Rockwell Automation) этой фирмы изготовлено с должным качеством выходной мощности (кВт) и необходимыми в действии функциями.

Выбранное направление изготовления (преобразователи частоты Rockwell Automation) компании дало большое применение:

  • Регулирование оборотов двигателей.
  • Пуска двигателей в безопасном режиме.
  • Защищенность от аварий двигателей.

Преобразователи частоты серии Powerflex американской компании Rockwell Automation предлагают регулирование направления вращения, момента и выходной скорости вращения высоковольтных электродвигателей переменного тока. Временной период для монтажа и работ по наладке и пуску приводов двигателей доведен до минимального значения, благодаря американской технологии.

Высоковольтные преобразователи частоты для газоразрядных ламп

Этот преобразователь выходной частоты приобрел широкую известность у любителей электроники, увлекающихся техникой высокого напряжения. Преобразователь частоты называется инвертором Вальдемара. Это однотактный преобразователь, с большой мощностью (кВт). Сделан на базе генератора ШИМ, с использованием микросхемы UC3845.

Инвертор имеет выходную мощность 0,07 кВт. Его можно разогнать до 0,12 кВт. Высоковольтные преобразователи частоты применяются для подключения ламп с газовым разрядом, заряжания высоковольтных емкостей. Его применяют для заряжания пушек Гаусса. Значение частоты работы около 50 килогерц.

Трансформаторная катушка наматывается на сердечнике блока питания компьютера. Сначала отматываются обмотки штатного вида.

На пустой каркас наматывается 27 витков медного провода диаметром 0,8 мм, провод не отрезается, делается изоляция обмоточного слоя.

Из провода диаметром 0,8 мм изготавливается четырехжильный провод, наматывается сверху первой обмотки пять жил. Они и будут первичной обмоткой.

Далее, устанавливаем изоляцию и наматываем другие 27 витков (другая половина обмотки №2). Полевой ключ не нагревается до высокой температуры за долгое время. К этому прибору предъявляются определенные требования. Напряжение на выходе регулируются переменным резистором регулятора. Когда конденсатор зарядится до конца, то генератор отключится автоматически, будет светиться индикатор.

Полевой ключ надо устанавливать на отведение тепла. Диоды применяются UF4007. Их не надо путать с IN4007. Они похожи по многим параметрам. Транзистор полевик инвертора нужно брать IRF3205, но лучше IRF3207, так как он лучше работает. Прибором можно заряжать емкости на напряжение160 – 800 вольт. Сокращается число витков на второй обмотке из-за высокой частоте работы.

Это инвертор мощный и компактный, применяется для многих целей. Наибольший потребляемый ток до 15 ампер, напряжение входа 8-16 вольт. Выходное напряжение опасно для жизни! Такой инвертор изготавливается и на заказ.

Конструктивные данные и условия работы пч серии ABS-DRIVE

Преобразователи частоты не допускают изменения совместного действия с остальными приборами, устройствами выпрямления тока в одной сети выходного напряжения.

Электропривод с регулировкой частоты и большим коэффициентом выходной мощности (кВт) дает большой эффект линейного тока входа. Волна тока привода с малым коэффициентом мощности имеет форму прямоугольника, приводит к гармоникам.

При применении трансформатора с несколькими обмотками и множеством ячеек в схеме питания ток частотного преобразователя формы синуса. Это соответствует стандарту. Коэффициент мощности больше 95% на всем интервале скорости без наружных емкостей для увеличения коэффициента мощности.

Это стабилизирует напряжение, нет излишней нагрузки реактивной мощности питания (кВт), разъединителей и трансформаторов.

Во время эксплуатации с малой скоростью электроприводы данной серии имеют большой эффект, так как по всем скоростям обеспечен большой коэффициент мощности электрических двигателей стандартного типа.

При конструировании приводов этой серии с регулированием частоты имеет место характеристика формы синуса тока выхода без наружных фильтров выхода. Это дает малую степень изменения синусоиды приводом напряжения выхода. Из-за этого нет шума двигателя, не нужно производить форсирование мотора.

Привод подсоединяется к мотору с коэффициентом эксплуатации равном 1,0. АБС Драйв привод не дает возникать гармоникам, нагреву мотора. Пульсирование момента вращения при эксплуатации привода отсутствует на всех скоростях. Это уменьшает нагруженность инвертора на оборудование.

Градиент напряжения в номинальном режиме уменьшен до минимального значения.

Механизм регулирования частоты электрических двигателей имеет в составе входной трансформатор, встроенный в корпус, оборудования микроконтроллеров. На 6 и 6,6 киловольт применяется 15, 18 или 21 ячейка, которые совмещены в последовательную схему по 5, 6, 7 штук на каждой фазе. На 10 и 11 киловольт применяется 24 и 27 ячеек, которые совмещены в последовательную схему по 8-9 штук на фазе.

Состав преобразователя частоты ABS-DRIVE-A

Главные достоинства:

  • Наилучшая ценовая линейка при качестве.
  • Схема образования выходного напряжения выхода со многими уровнями дает форму синуса выхода без возникновения высоких гармоник.
  • Встроенный силовой трансформатор со многими обмотками в одном щите, новая схема образования части преобразования дают синус тока потребления и не возникает влияние на сеть питания высоких гармоник.
  • Увеличенная гарантия надежности. При отказе нескольких ячеек регулировка электрического двигателя будет продолжаться при уменьшении мощности выхода (кВт) до наступления ремонта преобразователь частоты.
  • Нет нужды в монтаже фильтров выхода электромотора для оптимизации формы тока выхода.
  • Протяженность линии подсоединяемого электромотора до 1 километра.
  • В основном комплекте: пульт управления с множеством опций с индикатором на жидких кристаллах, удобное русское меню, запчасти и инструмент для функционирования и работы за время гарантийного срока, все документы (испытательные, конструкторские, эксплуатационные). Все оформлено по стандартам нашей страны.
  • Опции шунтирования в автоматическом режиме преобразователи частоты во время блокировок, которые обусловили выключение, подключение мотора на сеть напряжения 6 или 10 киловольт.

Защита, самодиагностика поломок:

  • От внутренних замыканий, выходных замыканий инвертора, защита тока, от чрезмерного нагрева выпрямителя, преобразователя и механизма отброса энергии при отсутствии вентиляции, от отключения питания, сильного увеличения и уменьшения напряжения, уменьшением мощности выхода (кВт), способности регулировки мотора.
  • От открывания щитовых дверей.
  • Регулятор с многими опциями, эффективно регулирует в автоматическом режиме значения процесса.
  • Опция действия инвертора с группой насосов с подхватыванием в резерве и переключением на основную сеть питания.
  • Комплектование и согласование работы различного оборудования (моторы, механизмы техпроцесса).

Преобразователь частоты на катушке зажигания:

Преобразователь частоты изготовлен на таймере NE555. Сигнал микросхемы поступает на каскад буфера из 2-х транзисторов. Формула расчета преобразования частоты:

RA=R2, RB=R1

При проведении опытов обнаружили, что самая большая дуга выходит на 147 Гц и 16 В сети.

Как устроена катушка зажигания?

Она имеет в составе обмотки и сердечник в металлическом ящике в масле. Вторичная обмотка на сердечнике, состоящем из полосок тонкой и мягкой стали. Диаметр проволоки 0,1 мм, от 16 до 20 тысяч витков.

Сверху на нее наложена первичная обмотка, проволока 0,7 мм, 350 витков. Первичную обмотку располагают снаружи для лучшего охлаждения. На нее надеваются пластины в виде стальных полуколец. Они выполняют роль магнитного провода.

В нем замыкаются силовые линии сердечника.

Умножитель подключается на выходе катушки:

Он имеет схему симметричного вида, хорошей реакцией к нагрузкам, повышением напряжения по ступеням на звеньях. Количество ступеней повышается.

Преобразователи частоты для управления высоковольтными электродвигателями

Источник: http://chistotnik.ru/vysokovoltnyj-preobrazovatel-chastoty.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.