Прибор для проверки любых транзисторов

Содержание

Прибор для проверки коэффициента усиления мощных и маломощных транзисторов своими руками | Мастер Винтик. Всё своими руками!

Прибор для проверки любых транзисторов

Хотя сейчас много в продаже различных приборов и мультиметров, измеряющих коэффициент усиления транзисторов, но любителям что-нибудь мастерить и паять можно порекомендовать несколько несложных схем и доработку.

Данный прибор для проверки транзисторов позволяет точно замерять ряд следующих параметров…

  • Коэффициент усиления h21э маломощных транзисторов.
  • Коэффициент усиления h21э мощных транзисторов.
  • Минимальное напряжение питания коллекторной цепи, при котором сохраняется линейный динамический режим работы маломощных транзисторов.
  • Минимальное напряжение питания коллекторной цепи, при котором сохраняется линейный динамический режим работы мощных транзисторов.
  • Полярность и соответствие выводов маломощных транзисторов.
  • Полярность и соответствие выводов мощных транзисторов.

Работа схемы в режиме измерения коэффициента транзисторов

Эта схема стабилизирует в проверяемом транзисторе ток Б/Э, при этом транзистор открывается и начинает течь ток К/Э, который вызывает падение напряжения на нагрузочных резисторах 36 и 360 ом, для мощных и маломощных транзисторов соответственно. Миллиамперметр при этом измеряет ток или напряжение базы транзистора.

h21э = Iэ/Iб, у нас ток эмиттера стабилизирован, при таком режиме измеряя базовый ток можно легко высчитать h21э и сразу отградуировать шкалу миллиамперметра в единицы коэффициента усиления транзистора.

В режиме вольтметра в цепи базы можно находить минимальное напряжение, при котором базовые и эмиттерные токи проверяемого транзистора перестают зависеть от коллекторного напряжения. Этот параметр важен для оптимизации питающих напряжений усилителей НЧ, транзисторных каскадов отвечающих за линейность преобразуемых сигналов, полу мостовых и мостовых инверторов, и т. д.

Преобразователь напряжения выполнен на двухтактном микроконтроллере электронных пускорегулирующих аппаратов ЭПРА 1211ЕУ1, по типовой схеме включения.

Микросхема представляет специализированный микроконтроллер с питанием от 3 до 24 Вольт, с малой потребляемой мощностью, выполненного на полевых транзисторах.

Данный контроллер имеет двухтактный выходной каскад с защитным интервалом, содержит малое количество навесных элементов, имеет два вывода для защиты по питанию, вывод для выбора рабочей частоты, максимальный выходной ток 250 мА.

Преобразователь вырабатывает постоянное напряжение 25-30 Вольт для обеспечения режима измерения минимального напряжения, при котором базовые и эмиттерные токи проверяемого транзистора перестают зависеть от коллекторного напряжения.

Обозначение и краткое описание параметров и режимов транзисторов

Для понимания процесса измерения параметров транзисторов, необходимо знать по каким критериям оцениваются измеряемые параметры.

Параметры четырехполюсника взаимосвязаны по определенным системам уравнений, описывающих происходящие процессы.

Если в данное время чаще пользуются одна система, это не значит, что других систем не существует.

Виды систем параметров транзисторов

Существует несколько признанных систем параметров транзисторов.

1. Когда в базовых переменных взяты токи, такая система будет называться, система z — параметров.

Z-система применяется для области низких частот, потому что в ней не учтены реактивные элементы.

По ней измеряются характеристические сопротивления в режиме холостого хода по переменному току, поэтому она вошла в историю как система параметров холостого хода.

В z-системе значения параметров обозначаются буквами r и z.

2. Если в базовых переменных взяты напряжения, такая система будет называться — система y — параметров.

Здесь параметры выражаются в виде полных проводимостей и определяются в режиме короткого замыкания. В y-системе для низких частот параметры определяются активной составляющей проводимости.

В y-системе значения параметров обозначаются буквами g.

Систему y-параметров удобно применять для характеристики параметров плоскостных транзисторов, так как при этом не нужно создавать режима холостого хода. Режим короткого замыкания по переменному току в этой системе создается шунтированием выхода конденсатором.

В этой системе возникают трудности при измерении проводимости обратной связи g12, Потому что для этого измерения необходимо создать режим короткого замыкания на входе транзистора.

Y-систему удобно применять для расчетов, особенно если есть необходимость сравнить транзисторный каскад с ламповым. Параметры этой системы наиболее близки к параметрам электронных ламп.

Эту систему можно назвать системой режима короткого замыкания.

3. Если в базовых переменных взяты входные токи и выходные напряжения, такая система будет называться — система h — параметров. Она же смешанная система.

Смешанная система является наиболее удобной для определения параметров транзисторов.

В h-системе значения параметров обозначаются буквами hб, hэ, hк, для базовых, эмиттерных и коллекторных цепей соответственно.

Коэффициент передачи тока или коэффициент усиления по току.

Коэффициентом передачи тока называют отношение тока коллектора к вызвавшему его току базы.

Коэффициент передачи тока h21 в системе h параметров имеет следующие обозначения:

· h21б коэффициент передачи тока в схемах с общей базой, это hб параметры.

· h21э коэффициент передачи тока в схемах с общим эмиттером, это hэ параметры.

· h21к коэффициент передачи тока в схемах с общим коллектором, это hк параметры.

Но для коэффициента передачи тока есть общее обозначение, применяемое во всех трех приведенных системах параметров, обозначаемое греческими буквами Альфа и Бэта, которое имеет следующий вид.

· Греческой буквой Альфа, обозначается коэффициент усиления по току для транзисторов, включенных по схеме с общей базой — ОБ. Он же обозначается как -h21б. Альфа = — h21б.

· Греческой буквой Бэта, обозначается коэффициент усиления по току для транзисторов, включенных по схеме с общим эмиттером — ОЭ. Он же обозначается как -h21б. Вэта = h21э.

Справка

Транзисторы, у которых между коллектором и эмиттером включен диод, защищающий транзистор от инверсных (обратных) токов, возникающих в результате переходного процесса при работе на индуктивную нагрузку и при возникающем изменении полярности питающего напряжения. Такие транзисторы не пригодны для использования в инверторных мостовых схемах.

Испытатель для транзисторов

Данный прибор работает без единой поломки с 1981 года, за период эксплуатации не было ни одного экземпляра транзистора, которого этот прибор не смог проверить.

    Предлагаемый испытатель транзисторов может с достаточной для схем точностью определять величину усиления транзисторов до 1000 единиц. Это позволяет определять коэффициент усиления составных транзисторов. Прибор точно проверяет усиление транзисторов любой мощности без дополнительных коммутаций.

    Прибор позволяет очень быстро проводить следующие измерения:

  •   Проверку работоспособности транзистора.
  •   Определения коэффициента усиления одиночных транзисторов.
  •   Определения коэффициента усиления составных транзисторов.
  •   Определения проводимости транзистора.
  •   Определения соответствия выводов транзистора.
  •   Подбор транзисторов с одинаковым коэффициентом усиления.

    Принцип действия прибора основан на том, что испытываемый транзистор V1 вместе с транзистором V2 образуют несимметричный мультивибратор.

    Параметры мультивибратора подобраны таким образом, что генерация импульсов возможна только тогда, когда суммарное сопротивление резисторов, включенных в цепь базы испытуемого транзистора, численно равно или чуть меньше значения его коэффициента h21э. Если сопротивление в цепи базы транзистора V1 больше его коэффициента передачи по току, генерация не возникает, и звука нет.

    Структуру проверяемых транзисторов устанавливают переключателем S1.

    Переменный резистор R3, должен быть группы «А», с линейной зависимостью характеристики.

    В приборе примененные транзисторы можно заменить на следующие.

    V2 — КТ315, V3 — ГТ404, V4 — ГТ402 или их импортные аналоги.

    Чем больше усиление транзистора, тем дольше будет слышен звук в динамике.

Схема была опубликована в журнале «Radioamatater» Югославия и в журнале «Радио» №10, за 1981 год.

Спасибо за внимание. Удачи!

Белецкий А. И.

Доработка испытателя транзисторов

Для данного испытателя транзисторов можно сделать две доработки (сайт:domcxem.ru).

Введена проверка полевых транзисторов и унифицированный звуковой сигнализатор.

Доработанная схема испытателя транзисторов.

1) Отдельная фиксируемая кнопка включает в «базу» проверяемого транзистора резистор, сопротивлением 100 КОм, заземленный с другой стороны. Так измеритель может проверять полевые транзисторы с p-n переходом и p или n каналом (КП103 КП303 и им подобные). Также, без переделки, в этом режиме можно проверять МОП транзисторы с изолированным затвором n- и p- типа (IRF540, IRF9540 и т.п.)

2) В коллектор второго транзистора измерительного мультивибратора (выход НЧ сигнала) я включил детектор с удвоением, по обычной схеме нагруженный на базу КТ 315-го.

Таким образом, К- Э переход этого ключевого транзистора замыкается, когда в измерительном мультивибраторе возникает генерация (определён коэффициент передачи).

Ключевой транзистор, открываясь, заземляет эмиттер ещё одного транзистора, на котором собран простейший генератор с резонатором на трёхвыводном пьезоэлементе – типовая схема генератора вызывного сигнала «китайского» телефона. Фрагмент схемы мультиметра – узел проверки транзисторов – приведён на рисунке, выше.

Такое схемное нагромождение было вызвано желанием использовать тот же вызывной генератор в узле сигнализации перегрузки по току лабораторного блока питания, так как первый, собранный мной, по упомянутой схеме, испытатель параметров транзисторов, был встроен в ЛБП.

Второй измеритель был встроен самодельный в многофункциональный стрелочный мультиметр, где один трёхвыводной пьезоизлучатель использовался как сигнализатор в режиме «пробник» (звуковая проверка короткого замыкания) и испытатель транзисторов.

Теоретически (я не пробовал), этот испытатель можно переделать для проверки мощных транзисторов, уменьшив, например, на порядок сопротивления резисторов в обвязке проверяемого транзистора.

Так же, возможно зафиксировать резистор в базовой цепи (1 или 10 кОм) и изменять сопротивление в коллекторной цепи (для мощных транзисторов).

P.S.  прибор для проверки величин допустимых напряжений и напряжений утечек транзисторов, диодов, конденсаторов и других радиодеталей.

  • Схема бегущих огней — солнышко
  • Для анимации каких-либо игрушек, для подарка или просто для творчества можно собрать схему «бегущего огня».Эффект создания огней бегущих из центра к краям. Очень похоже на лучи солнышко.Характеристики: 

    • Кол-во каналов — 3;
    • Кол-во светодиодов — 18 шт;
    • Uпит.= 3…12В.

    Подробнее…

  • Схема ограничения тока
  • Как ограничить ток через нагрузку?

    Часто бывает возникает необходимость ввести в схему ограничение по току. Это один из методов защиты электронной нагрузки. При коротком замыкании в цепи нагрузки схемой защиты по току можно спасти источник питания от повреждения.

    Подробнее…

  • Чертежи и подробное описание самогонного аппарата
  • (+18) Водка дорожает и качество её часто вызывает сомнения. Поэтому иногда (в праздник) угостить гостей хочется безопасным для здоровья напитком. Самогонный аппарат можно купить, а можно и сделать из подручных материалов своими руками. Подробное описание конструкции самогонного аппарата с чертежами далее в статье.

    Статья предназначена для лиц не моложе 18 лет!!!

    Подробнее…

Популярность: 774 просм.

Источник: http://www.MasterVintik.ru/sxema-pribora-dlya-proverki-tranzistorov/

Универсальный прибор для проверки радиоэлементов из стрелочного тестера

Прибор для проверки любых транзисторов

Журнал РАДИОЛОЦМАН, ноябрь 2015

Андрей Барышев, г. Выборг

Стрелочные тестеры типа 4353, 43101 и другие в свое время были широко распространены. Приборы имели встроенную защиту и позволяли производить измерения различных электрических параметров, однако отличались громоздкостью, а при измерении емкости конденсаторов были привязаны к сетевому напряжению.

При этом тестеры имели неплохие стрелочные измерительные головки, которые можно использовать в конструкции с гораздо меньшими габаритами и бóльшими возможностями.

Так, с использованием этой головки был сделан небольшой настольный аналоговый измерительный прибор с минимальным количеством элементов управления.

Он позволяет с достаточной для радиолюбителя точностью измерять емкость неполярных конденсаторов (5 пФ – 10 мкФ), индуктивность катушек (от единиц мкГн до 1 Гн), емкость электролитических конденсаторов (1 мкФ – 10 000 мкФ) и их ESR, иметь «под рукой» фиксированные образцовые частоты (10, 100.

1000 Гц, 10, 100, 1000 кГц) и, кроме того, в него может быть добавлен встроенный модуль для оперативной проверки работоспособности различных транзисторов малой и большой мощности и определения цоколевки неизвестных транзисторов. Причем проверить параметры большинства элементов можно, не выпаивая их из схемы.

Модульная конструкция прибора позволяет использовать только необходимые функциональные узлы. Ненужные модули можно легко исключить, а нужные так же легко добавить при желании. Возможность сохранения «родных» функций прибора – измерения напряжений и токов – также имеется.

Ну и, конечно, стрелочная измерительная головка может быть любой другой (с током полного отклонения 50 … 200 мкА), это не принципиально.

Далее будут даны схемы и описания отдельных функциональных «модулей» прибора, а затем – структурная схема всего прибора полностью и схема коммутации отдельных его узлов.

Все схемы были не раз проверены на практике и показали стабильную и надежную работу, без сложных настроек и использования каких-либо специфических деталей. При необходимости сделать компактный прибор для проверки конкретных компонентов и их параметров каждую такую схему-модуль можно использовать отдельно.

Генератор образцовых частот

Использована широко распространенная схема генератора на цифровых элементах, которая при всей своей простоте обеспечивает набор необходимых рабочих частот с хорошей точностью и стабильностью, не требуя при этом никаких настроек.

Рисунок 1.Генератор 1 МГц с делителями частоты.

Генератор на микросхеме К561ЛА7 (или ЛЕ5) синхронизирован кварцевым резонатором в цепи обратной связи, определяющим частоту сигнала на его выходе (выводы 10, 11), равную в данном случае 1 МГц (Рисунок 1). Сигнал генератора последовательно проходит через несколько каскадов делителей частоты на 10, собранных на микросхемах К176ИЕ4, СD4026 или любых других.

С выхода каждого каскада снимается сигнал с частотой в десять раз меньшей входной частоты. C помощью любого переключателя на шесть положений сигнал с генератора или с любого делителя можно вывести на выход. Правильно собранная из исправных деталей схема работает сразу и не нуждается в настройке.. Конденсатором С1 при желании можно в небольших пределах подстраивать частоту.

Схема питается напряжением 9 В.

Модуль измерения L, C

Схема каскада для измерения емкости неполярных конденсаторов и индуктивностей показана на Рисунке 2. Входной сигнал подается непосредственно с выхода переключателя диапазонов измерений (SA1 на Рисунке 1).

Сформированный прямоугольный импульсный сигнал, поступающий на выход «F» через ключевой транзистор VT1, можно использовать для проверки или настройки других устройств. Уровень выходного сигнала можно регулировать резистором R4.

Этот сигнал подается также на измеряемый элемент – конденсатор или индуктивность, подключенные, соответственно, к клеммам «C» или «L», при этом переключатель SA2 устанавливается в соответствующее положение. К выходу «Uизм.» подключается непосредственно измерительная головка (возможно, через добавочное сопротивление; см. ниже «Модуль индикации»).

Резистор R5 служит для установки пределов измерений индуктивностей, а R6 – емкостей. Для калибровки каскада к клеммам «Сх» и «Общий» на диапазоне 1 кГц подключаем образцовый конденсатор 0.1 мкФ (см. схему на Рисунке 1) и подстроечным резистором R6 устанавливаем стрелку прибора на конечное деление шкалы.
Рисунок 2.Модуль измерения емкости и индуктивности.

Затем подключаем конденсаторы, например, емкостью 0.01, 0.022, 0.033, 0.047, 0.056, 0.068 мкФ и делаем соответствующие метки на шкале.

После чего таким же образом калибруем шкалу индуктивностей, для чего на этом же диапазоне 1 кГц подключаем к клеммам «Lx» и «Общий» образцовую катушку индуктивностью 10 мГн и подстроечным резистором R5 устанавливаем стрелку на конечное деление шкалы.

Впрочем, калибровать прибор можно и на любом другом диапазоне (например, при частоте 100 кГц или 100 Гц), подключая в качестве образцовых соответствующие емкости и индуктивности, согласно выбранному диапазону.

Напряжение питания каскада (Uпит) – 9 В.

Модуль измерения электролитических конденсаторов (+C и ESR)

Модуль представляет собой микрофарадометр, в котором определение емкости производится косвенным образом путем измерения величины напряжения пульсаций на резисторе R3, которое будет меняться обратно пропорционально емкости периодически перезаряжаемого конденсатора. Можно измерять емкости оксидных (электролитических) конденсаторов в диапазонах 10–100, 100–1000 и 1000–10000 мкФ.

Измерительный узел для электролитических конденсаторов собран на транзисторе Т1 (Рисунок 3). На вход (R1) подается сигнал непосредственно с выхода генератора-делителя (схема на Рисунке 1), включать который можно параллельно предыдущему модулю.

Резистор R1 подбираем в зависимости от типа использованного транзистора Т1 и чувствительности используемой измерительной головки. Резистор R2 ограничивает ток коллектора транзистора в случае короткого замыкания в проверяемом конденсаторе.

В отличие от других модулей, здесь требуется пониженное стабильное питание 1.2 – 1.8 В; схема стабилизатора на такое напряжение будет приведена ниже на Рисунке 6.

Следует отметить, что при измерениях полярность подключения конденсатора к клеммам «+Сх» и «Общий» не имеет значения, а измерения можно выполнять, не выпаивая конденсаторы из схемы. Перед началом измерений резистором R4 стрелка устанавливается на нулевую отметку (конец шкалы).

Рисунок 3.Модуль измерения ESR и емкости электролитических конденсаторов.

Перед началом измерений (при отсутствии измеряемого конденсатора «+Сх») резистором R4 стрелка устанавливается на нулевую отметку (конечное деление шкалы). Калибровка шкалы «+Сх» может производиться на любом диапазоне. Например, переводим переключатель SA1 в положение, соответствующее частоте 1 кГц.

С помощью R4 устанавливаем стрелку прибора на «0» (конец шкалы) и, подключая к клеммам «+Сх» и «Общий» образцовые конденсаторы емкостью 10, 22, 33, 47, 68 и 100 мкФ, делаем соответствующие отметки на шкале.

После этого на других диапазонах (10 Гц и 100 Гц) эти же отметки будут соответствовать емкостям с номиналами в 10 и 100 раз бóльшими, то есть, от 100 до 1000 мкФ (100, 220, 330, 470, 680 мкФ) и от 1000 до 10000 мкФ, соответственно.

В качестве образцовых здесь можно использовать танталовые оксидно-полупроводниковые конденсаторы, имеющие наиболее стабильные во времени параметры, например, типов К53-1 или К53-6А.

Узел измерения ESR содержит отдельный генератор 100 кГц, собранный на микросхеме 561ЛА7 (ЛЕ5) по такой же схеме, как и основной генератор на Рисунке 1. Здесь особой стабильности не требуется, и частота может быть любой от 80 до 120 кГц.

От величины последовательного эквивалентного сопротивления подключенного к клеммам конденсатора зависит ток, протекающий через обмотку I трансформатора (намотан на ферритовом кольце диаметром 15 – 20 мм). Марка феррита роли не играет, но, возможно, число витков первичной обмотки нужно будет подкорректировать.

Поэтому лучше сначала намотать обмотку II, а первичную – поверх нее. Выпрямленное постоянное напряжение после диода VD5 подается на измерительную головку (модуль индикации на Рисунке 4). Диоды VD3, VD4 ограничивают возможные броски напряжений для защиты стрелочной головки от перегрузки.

Здесь полярность подключения конденсатора также не важна, и измерения можно проводить непосредственно в схеме.

Пределы измерения можно менять в широких пределах подстроечным резистором R5 – от десятых долей Ома до нескольких Ом. Но при этом следует учитывать влияние сопротивления проводов от клемм «ESR» и «Общий». Они должны быть как можно короче и большого сечения.

Если этот модуль будет расположен вблизи с другим источником импульсных сигналов (например, рядом с генератором Рисунок 1), возможен срыв генерации узла на микросхеме.

Поэтому узел измерения «ESR» лучше собрать на отдельной небольшой плате и поместить в экран (например, из жести), соединенный с общим проводом.

Рисунок 4.Структурная схема измерителя.

Для калибровки шкалы «ESR» подключаем к клеммам «ESR» и «Общий» резисторы сопротивлением 0.1, 0.2, 0.5, 1, 2. 3 Ом и делаем соответствующие отметки на шкале. Чувствительность прибора можно регулировать изменением сопротивления подстроечного резистора R5.

Питание измеритель ESR, так же, как и остальные схемы модуля, напряжением 9 В.

Схема соединений модулей прибора

Как видно из Рисунка 4, соединение всех «модулей» не представляет сложности. Модуль индикации включает в себя измерительную головку, зашунтированную конденсатором (100 … 470 мкФ) для устранения «дрожания» стрелки при измерениях в диапазонах с низкой частотой задающего генератора. В зависимости от чувствительности измерительной головки может понадобиться добавочное сопротивление.

Следует иметь в виду, что клемма «Общий» на Рисунке 2 (модуль измерения «C» и «L») не является общим проводом схемы (!) и требует отдельного гнезда.

Дополнения

Составной транзистор Т1 (схема Рисунке 3) при необходимости можно заменить узлом из двух транзисторов меньшей мощности, а в источнике питания 1.4 В можно использовать простой стабилизатор на одном транзисторе.

Как это сделать, показано на Рисунках 5 и 6. Функцию стабилитрона здесь выполняют кремниевые диоды VD1-VD3 с суммарным прямым падением напряжения порядка 1.5 В.

Включать диоды, в отличие от стабилитрона, нужно в прямом направлении.

Рисунок 5.Замена КТ829Г.

При желании можно дополнить прибор модулем для быстрой проверки транзисторов. С его помощью можно проверять любые биполярные транзисторы, а также полевые транзисторы малой и средней мощности. Причем биполярные транзисторы и, в ряде случаев, полевые, можно проверять без выпаивания их из схемы.

Представленная на Рисунке 7 схема представляет собой комбинацию мультивибратора и триггера, где вместо резисторов нагрузки в коллекторные цепи транзисторов мультивибратора включены транзисторы с идентичными параметрами, но противоположной структуры (VT2, VT3).

Резисторы R6, R7 задают необходимое напряжение смещения рабочей точки проверяемого транзистора, а R5 ограничивает ток через светодиоды и определяет яркость их свечения.

Рисунок 6.Стабилизатор низковольтный.

В зависимости от типа используемых светодиодов, возможно, придется подобрать сопротивление R5, ориентируясь на оптимальную яркость их свечения, или же поставить дополнительный гасящий резистор в цепь питания 9 В. Следует заметить, что эта схема работает с питающим напряжением, начиная от 2 В.

Когда к клеммам «Э», «Б», «К» ничего не подключено, оба светодиода мигают. Частоту мигания можно подстраивать, меняя емкости конденсаторов С1 и С2. При подключении к клеммам исправного транзистора один из светодиодов погаснет, в зависимости от типа его проводимости – p-n-p или n-p-n.

Если транзистор неисправен, оба светодиода будут мигать (внутренний обрыв) или оба погаснут (замыкание). Помимо клемм «Э», «Б», «К» на самом приборе (клеммная колодка, «фрагмент» панельки под микросхемы и прочее), можно параллельно им вывести из корпуса на проводах соответствующие щупы для проверки транзисторов на платах.

При испытаниях полевых транзисторов клеммы «Э», «Б», «К» соответствуют выводам «И», «З», «С».
Рисунок 7.Схема для проверки транзисторов.

Следует учесть, что полевые транзисторы или очень мощные биполярные все-таки лучше проверять, выпаяв из платы.

При измерениях номиналов любых элементов непосредственно на плате следует обязательно отключить питание схемы, в которой производятся измерения!

Прибор занимает мало места, умещаясь в корпусе 140×110×40 мм (см. фото справа в начале статьи) и позволяет с достаточной для радиолюбителей точностью проверять практически все основные типы радиокомпонентов, чаще всего используемых на практике. Прибор без нареканий эксплуатируется в течение нескольких лет.

Источник: https://www.rlocman.ru/shem/schematics.html?di=179993

Основные способы проверки транзистора

Прибор для проверки любых транзисторов

Транзистор – это очень важный элемент большинства радиосхем. Тем, кто решил заняться радиомоделированием, необходимо в первую очередь знать, как их проверять и какие устройства при этом использовать.

В биполярном транзисторе имеется в наличии 2 PN перехода. Выводы из него называют эмиттером, коллектором и базой.

Эмиттер и коллектор – это элементы, размещенные по краям, а база находится между ними, посередине.

Если рассматривать классическую схему движения тока, то сначала он входит в эмиттер, а затем накапливается в коллекторе. База необходима для того, чтобы регулировать ток в коллекторе.

Пошаговая инструкция проверки мультимером

Перед началом проверки, прежде всего определяется структура триодного устройства, которая обозначается стрелкой эмиттерного перехода. Когда направление стрелки указывает на базу, то это вариант PNP, направление в сторону, противоположную базе, обозначает NPN проводимость.

Проверка мультимером PNP транзистора состоит из таких последовательных операций:

  1. Проверяем обратное сопротивление, для этого присоединяем «плюсовой» щуп прибора к его базе.
  2. Тестируется эмиттерный переход, для этого «минусовой» щуп подключаем к эмиттеру.
  3. Для проверки коллектора перемещаем на него «минусовой» щуп.

Результаты этих измерений должны показать сопротивление в пределах значения «1».

Для проверки прямого сопротивления меняем щупы местами:

  1. «Минусовой» щуп прибора присоединяем к базе.
  2. «Плюсовой» щуп поочередно перемещаем от эмиттера к коллектору.
  3. На экране мультиметра показатели сопротивления должны составить от 500 до 1200 Ом.

Данные показания свидетельствуют о том, что переходы не нарушены, транзистор технически исправен.

Многие любители имеют сложности с определением базы, и соответственно коллектора или эмиттера. Некоторые советуют начинать определение базы независимо от типа структуры таким способом: попеременно подключая черный щуп мультиметра к первому электроду, а красный – поочередно ко второму и третьему.

База обнаружится тогда, когда на приборе начнет падать напряжение. Это означает, что найдена одна из пар транзистора – «база – эмиттер» или «база – коллектор». Далее необходимо определить расположение второй пары таким же образом. Общий электрод у этих пар и будет база.

Инструкция проверки тестером

Тестеры различаются по видам моделей:

  1. Существуют приборы, в которых конструкцией предусмотрены устройства, позволяющие измерить коэффициент усиления микротранзисторов малой мощности.
  2. Обычные тестеры позволяют осуществить проверку в режиме омметра.
  3. Цифровой тестер измеряет транзистор в режиме проверки диодов.

В любом из случаев существует стандартная инструкция:

  1. Прежде, чем начать проверку, необходимо снять заряд с затвора. Это делается так – буквально на несколько секунд заряд необходимо замкнуть с истоком.
  2. В случае, когда проверяется маломощный полевой транзистор, то перед тем, как взять его в руки, обязательно нужно снять статический заряд со своих рук. Это можно сделать, взявшись рукой за что-нибудь металлическое, имеющее заземление.
  3. При проверке стандартным тестером, необходимо в первую очередь определить сопротивление между стоком и истоком. В обоих направлениях оно не должно иметь особого различия. Величина сопротивления при исправном транзисторе будет небольшой.
  4. Следующий шаг – измерение сопротивления перехода, сначала прямое, затем обратное. Для этого необходимо подключить щупы тестера к затвору и стоку, а затем к затвору и истоку. Если сопротивление в обоих направлениях имеет разную величину, триодное устройство исправно.

Как проверить транзистор, не выпаивая из схемы

Схема пробника для проверки транзисторов: R1 20 кОм, С1 20 мкФ, Д2 Д7А — Ж.

Выпаивание из схемы определенного элемента сопряжено с некоторыми трудностями – по внешнему виду сложно определить, какое именно из них необходимо выпаивать.

Многие профессионалы для проверки транзистора непосредственно в гнезде предлагают использовать пробник. Этот прибор представляет собой блокинг-генератор, в котором роль активного элемента играет сама деталь, требующая проверки.

Система работы пробника со сложной схемой построена на включении 2 индикаторов, которые сообщают – пробита цепь, или нет. Варианты их изготовления широко представлены в интернете.

Последовательность действий при проверке транзисторов одним из таких приборов, следующая:

  1. Сначала тестируется исправный транзистор, с помощью которого проверяют, есть генерация тока, или нет. Если генерация есть, то продолжаем тестирование. При отсутствии генерации меняются местами выводы обмоток.
  2. Далее проверяется лампа Л1 на размыкание щупов. Лампочка должна гореть. В случае, если этого не происходит, меняются местами выводы любой из обмоток трансформатора.
  3. После этих процедур начинается непосредственная проверка прибором транзистора, который предположительно вышел из строя. К его выводам подключаются щупы.
  4. Переключатель устанавливается в положение PNP или NPN, включается питание.

Свечение лампы Л1 свидетельствует о пригодности проверяемого элемента схемы. Если же начинает гореть лампа Л2, значит есть какие-то неполадки (скорее всего пробит переход между коллектором и эмиттером);

В случае если не горит ни одна из ламп, то это признак того, что он вышел из строя.

Существуют также пробники с очень простыми схемами, которые перед началом работы не требуют никакой наладки. Они характеризуются очень малым током, который проходит через элемент, подлежащий тестированию. При этом, опасность его вывода из строя практически нулевая.

К такой категории относятся приборы, состоящие из батарейки и лампочки (или светодиода).

Для проверки нужно последовательно выполнить такие операции:

  1. Подключить к наиболее вероятному выходу базы один из щупов.
  2. Вторым щупом поочередно касаемся каждого из оставшихся двух выводов. Если в одном из подключений контакта нет, тогда произошла ошибка с выбором базы. Нужно начинать сначала с другой очередностью.
  3. Далее советуют проделать те же операции с другим щупом (поменять плюсовый на минусовый) на выбранной базе.
  4. Поочередное соединение базы щупами разных полярностей с коллектором и эмиттером в одном случае должно зафиксировать контакт, а в другом нет. Считается, что такой транзистор исправный.

Основные причины неисправности

Наиболее часто встречающиеся причины выхода из рабочего состояния триодного элемента в электронной схеме следующие:

  1. Обрыв перехода между составными частями.
  2. Пробой одного из переходов.
  3. Пробой участка коллектора или эмиттера.
  4. Утечка мощности под напряжением цепи.
  5. Видимое повреждение выводов.

Характерными внешними признаками такой поломки являются почернение детали, вспучивание, появление черного пятна. Поскольку эти изменения оболочки происходят только с мощными транзисторами, то вопрос диагностики маломощных остается актуальным.

Советы

  1. Существует множество способов определения неисправности, но для начала нужно разобраться в строении самого элемента, и четко понимать конструкционные особенности.
  2. Выбор прибора для проверки – это важный момент, касающийся качества результата. Поэтому при недостатке опыта не стоит ограничиваться подручными средствами.
  3. Проводя проверку, следует четко понимать причины выхода из строя тестируемой детали, чтобы не вернуться со временем к тому же состоянию неисправности бытовой электротехники.

Источник: https://slarkenergy.ru/oborudovanie/datchiki/kak-proveryat-tranzistor.html

Прибор для проверки эпс на транзисторах

Прибор для проверки любых транзисторов

Представляю вашему вниманию, как просто сделать измеритель ЭПС конденсаторов, который собирается всего за пару часов буквально «На коленке». Сразу предупреждаю, что не являюсь автором этой идеи, данную схему уже сотню раз повторили разные люди.

В схеме всего десять деталей, и любой цифровой мультиметр, с ним ничего колдовать не нужно, просто подпаиваемся к точкам и все. О деталях измерителя ЭПС. Трансформатор с соотношением витков 11\1.

Первичную обмотку нужно мотать виток к витку на кольце М2000 К10х6х3, на всей окружности кольца (изолированного), вторичку желательно распределить равномерно, с небольшим натягом. Диод D1 может быть любой, на частоту более 100 КГц и напряжение более 40 В, но лучше Шоттки.

Диод D2 — супресор на 26 — 36 В. Транзистор — типа КТ3107, КТ361 и аналогичные. Измерения ЭПС проводить на измерительном пределе 20 В.

Прибор для проверки оксидных конденсаторов на эпс (esr)

Внимание Вернее ремонтировать удавалось, но не более чем на неделю, все время горел транзистор строчной развертки, схемы телевизора не было.

Тут вспомнил, что видел на форумах простенький пробничек, схему помнил наизусть, родственник тоже немного занимался радиолюбительством, аудио усилители «клепал», поэтому все детали быстро нашлись.

Пару часов пыхтения паяльником, и родился вот такой приборчик: Были в 5 минут локализованы и заменены 4 подсохших електролитика, которые мультиметром определялись как нормальные, выпито за успех некоторое количество благородного напитка.

Прибор для контроля эпс

Важно Можно купить ДХО, а можно и сделать своими руками из подручных материалов. Подробнее…

  • Стробоскоп своими руками
  • С помощью стробоскопа получится красивый световой эффект для любой дискотеки. Можно использовать на танцплощадках, клубах и даже у себя дома.

Подробнее…

  • Простой сетевой индикатор последовательности фаз.
  • Индикатор, определяющий последовательность фаз в трехфазной цепи, можно по­строить на нескольких пассивных компонентах. В трехфазной сети источник питания развивает три одинаковых по амплитуде и час­тоте напряжения, которые сдвинуты по фазе друг относительно друга на 120° последо­вательно по проводам (фазам). Для установления правильной последовательности фаз существуют два варианта.
  • Выключатель питания SA2 — миниатюрный движко­вый или кнопочный, расположен с внешней стороны корпуса рядом с индикатором. Вместо указанной на схеме микро­схемы можно использовать К561ЛЕ5, аналогичные серии К176 или импортный аналог CD4011BE.

    Транзистор КТ315Б можно заменить любым маломощным транзистором структуры п-p-n с коэффициентом передачи тока базы не менее 100 или импортным аналогом С1815.

    Конденсаторы — малогабаритные керамические, резис­торы — мощностью 0,125 — 0,25 Вт. Ок­сидный конденсатор — К50-16 или импортный.

    Диоды VD2—VD5 — любые германиевые высокочастотные. Тип стрелочного индикатора сущест­венного значения не имеет.

    Esr измеритель конденсаторов

    Прибор позволяет с допустимой для пробника точностью оценивать эквивалентное последовательное сопротивление (ЭПС) конден­сатора в пределах от 2 до 50 Ом и ем­кость от 5 до 50 мкФ.

    Конструктивно прибор может быть выполнен в виде мини-тестера с вы­носными щупами и выключателем пи­тания с фиксацией либо как пробник с установкой коротких заостренных щупов и кнопочным включением пита­ния, что существенно увеличит срок службы батареи.

    В данном варианте размеры корпу­са составляют 90 x 45 x 20 мм. Индика­тор расположен с левой стороны попе­рек корпуса. Его магнитная система вставлена в отверстие в корпусе, а сам он приклеен к корпусу с внешней сто­роны.

    Монтаж элементов прибора вы­полнен на печатной плате, чертеж ко­торой приведен на рис.
    2 Детали и замена Для выбора вида измерений ис­пользован переключатель SA1 с фик­сацией из серии ПКН.

    Прибор для проверки любых транзисторов

    Осо­бенно это касается наиболее часто используемых конденсаторов емкос­тью от единиц до нескольких десятков микрофарад. После прочтения указанной статьи сразу же решил сделать такой прибор, но, как нередко бывает, под рукой не оказалось нужных микросхем.

    Поэтому вместо микросхемы К561ТЛ1 приме­нил, как мне кажется, более распрост­раненную К561ЛА7, стабилитрон КС127Д заменил на КС133А, вместо светодиодного индикатора использо­вал стрелочный индикатор уровня М68501 от магнитофона.

    Применение стрелочного индикато­ра позволило сделать прибор более точным, достаточно компактным и бо­лее экономичным.

    Ток потребления не зависит от режима работы и составля­ет около 1 мА, что дает возможность использовать малогабаритный источ­ник питания — батарею из трех миниа­тюрных дисковых элементов для ла­зерной указки. Несколько измененная схема при­ведена на рис. 1.

    Измеритель эпс оксидных конденсаторов

    Его чувствительность можно регулировать подбором резистора R8: при уменьшении сопротивления чувствительность увеличивается. Переменный резистор R9 служит для установки значения «∞» на шкале микроамперметра РА1, включённого в диагональ моста. Проверяемый конденсатор подключают к щупам, измеренное значение ЭПС считывают со шкалы микроамперметра.

    Каждый щуп подключён тремя проводами согласно схеме. Длина этих проводов не должна превышать 25 см. Такое подключение позволило получить сопротивление, при замыкании щупов не превышающее 0,15 Ом, что вполне достаточно для проверки любых конденсаторов ёмкостью не менее одной микрофарады.

    В устройстве применена измерительная головка М4762 — индикатор уровня записи от магнитофонов старых выпусков — с током полного отклонения 100…150 мкА. Диоды VD1, VD2 защищают милливольтметр при проверке неразряженных конденсаторов.

    Проблема быстрого контроля исправности оксидных конден­саторов решается, если использовать пробник, позволяющий примерно оценить емкость и эквивалентное последовательное сопротивление конденсатора без его демонтажа из ремонтируе­мой аппаратуры.

    Предлагается еще один вариант простого при­бора, аналогичного уже описанному в «Радио», но с использова­нием стрелочного индикатора. Многих радиолюбителей, да и про­фессиональных мастеров по ре­монту радио- и телеаппаратуры, на­верняка заинтересовала статья Р.

    Хафизова «Пробник оксидных конденса­торов» в журнале «Радио» (2003, № 10, с. 21). Общеизвестный метод проверки с помощью омметра, позво­ляя приблизительно оценить емкость и измерить утечку оксидных конден­саторов, далеко не всегда дает пол­ную информацию об их качестве. Опе­ративная проверка непосредственно на плате бывает затруднена из-за влияния элементов устройства.

    Устройство очень простое и состоит из трех компонентов. Основная часть — трансформатор. За основу можно взять любой малогабаритный трансформатор от импульсных блоков питания. Трансформатор состоит из двух обмоток. Первичная обмотка состоит из 24 витков с отводом от середины, провод от 0,2 до 0,8 мм.

    Вторичная обмотка состоит из 15 витков провода того же диаметра, что и первичка. Обе обмотки мотаются в одинаковом направлении.

    Светодиод подключен к вторичной обмотке через ограничительный резистор 100 ом, мощность резистора не важна, полярность светодиода тоже, поскольку на выходе трансформатора образуется переменное напряжение.

    Присутствует также специальная насадка, в которую вставляется транзистор с соблюдением цоколевки. Для биполярных транзисторов прямой проводимости (типа КТ 818, КТ 814, КТ 816 , КТ 3107 и т.

    Когда же он замкнут, сопротивление градуировочных резисторов выбирают в интервале от 0,25 до 10 Ом. В. Календо Смотрите другие статьи раздела Измерительная техника. Читайте и пишите полезные комментарии к этой статье.

    Рекомендуем скачать в нашей Бесплатной технической библиотеке: журналы Servo 2015 (архив за год) журналы ЮТ для умелых рук 1959 (архив за год) книга Цифровая регистрация аварийных событий в энерroсистемах.

    Пуляев В.И., Усачев Ю.В., 1999 книга 1000 выпусков Массовой радиобиблиотеки. Указатель литературы), 1980 статья Монета в платке статья Что такое астероид? справочник Зарубежные микросхемы и транзисторы.

    Идеально, если при максимальной ампли­туде колебаний на эмиттере VT1 ток через PA1 на 30 % больше тока полного отклонения стрелки, для компенсации разряда источника питания.

    Если стрелка «не дотягивает» до конечного деления шкалы, следует сгладить пульсации подключением конденсатора C4.

    Если же наоборот, чувствительность слишком высока, то последовательно с PA1 нужно включить гасящий резистор.

    Последним этапом является оцифровка шкалы пробника. Процедура очень простая. Подключая к выводам «Cx» резисторы известных номиналов, отмечают положение стрелки. После чего изготавли­вают шкалу в любом графическом редакторе.

    Можно поступить иначе. Подбирать значение резистора до совпадения стрелки с имеющимися на шкале делениями. Плюс этого метода в том, что «родную» шкалу миллиамперметра можно отсканиро­вать, а подставить необходимые значения в полученный рисунок гораздо проще.

    Для биполярных транзисторов обратной проводимости, нужно всего лишь поменять полярность питания. То же самое и с полевыми транзисторами, важно только не перепутать цоколевку транзистора. Если после подачи питание светодиод начинает светится, значит транзистор рабочий, если же нет, значит бросайте в мусор, поскольку прибор обеспечивает 100% точность проверки транзистора.

    Эти подключения нужно делать всего один раз, во время сборки прибора, насадка позволяет значительным образом сократить время проверки транзистора, нужно всего лишь вставлять транзистор в нее и подать питание.Устройство по идее является простейшим блокинг — генератором.

    Источник: http://law-uradres.ru/pribor-dlya-proverki-eps-na-tranzistorah/

    Поделиться:
    Нет комментариев

      Добавить комментарий

      Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.